English, asked by sanjayram2902d, 4 months ago

find L.S.A and T.S.A of a cubical of edges: 4cm​

Answers

Answered by adithyakrishnan6137
1

Answer:

L.S.A of cube= 64 cm

T.S.A of cube= 96cm

Step by Step Explanation:

L.S.A of cube = 4l²

l = 4cm

L.S.A of cube = 4 x (4)²

L.S.A of cube = 4 x 16

L.S.A of cube = 64 cm

T.S.A of cube = 6l²

T.S.A of cube = 6 x (4)²

T.S.A of cube = 6 x 16

T.S.A of cube = 96 cm

Answered by Anonymous
9

Lateral surface area of cube =  \sf {4(edge)}^{2}

 =  \sf4 {(4)}^{2}   \\  \sf = 4 \times 16 \\  \sf = 54 {cm}^{2}

Total surface area of cube = \sf6 {(edge)}^{2}

6 {(4)}^{2}   \\  \sf = 6 \times 16 \\  \sf = 96 {cm}^{2}

 \sf  \huge\pink{ \: L.S.A = 54 {cm}^{2}  }\\   \sf  \huge\pink{ \: T.S.A  = 96 {cm}^{2} }

Similar questions