Math, asked by lakshay1557, 3 months ago

find LCM and HCF of following pair of integer and verify that LCM × HCF = product of two numbers


(1. )26 and 91​

Answers

Answered by VivaciousDork
22

If the same factor occurs more than once in both numbers, you multiply the factor the greatest number of times it occurs. So the product of L.C.M and H.C.F is (182×13)=2366. And the product of two numbers is (26×91)=2366.

Hope this helps you ♥️

Have a good day ahead!!

Answered by Anonymous
51

\huge\underline\mathsf\purple{Answer:- }

\underline{\frak{\dag \; lcm \: of \:  \; 26: - }}

\begin{gathered}\Large{ \begin{array}{c|c|c} \tt 2 & \sf \orange{26 }& \sf \\ \tt 13& \sf \orange{13}& \orange{ }  \\ & \sf \orange{1 } & \sf \orange{ }\end{array}}\end{gathered}

\underline{\frak{\dag \; lcm \: of \; 91: - }}

\begin{gathered}\Large{ \begin{array}{c|c|c} \tt 7 & \sf \orange{91}& \sf \\ \tt 13& \sf \orange{13}& \orange{ }  \\ & \sf \orange{1 } & \sf \orange{ }\end{array}}\end{gathered}

\begin{gathered} \sf \purple{  26 = 2 \times 13} \: \\ \\ \sf \pink{ 91= 7 \times 13} \\ \\ \sf \green{hcf= 13} \\ \\ \sf \red{ \boxed{ \bf{lcm= 2 \times 7 \times 13 = 182}}}\end{gathered}

\boxed{ \red{ \sf product \: of \: two \: number = 26 \times 91 = 2366}} \:

\boxed{ \red{\sf hcf \times lcm = 13 \times 182 = 2366}} \:

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Note :-

Slide the screen to see the full answer ..!!

Similar questions