Math, asked by gkxgxjlxxp, 1 year ago

find least positive integer n for which [(1+i√3)/1-i√3)]^n=1

Answers

Answered by ravi34287
3
<b>answer is 9

hope it helps
Attachments:
Answered by nethranithu
5

Hey there


Here ur answer


→ [ ( 1 + i √3 ) / ( 1 - i √3 ) ]^и  = 1

→ 1 + i √3 / 1 - i √3

→ ( 1 + i √3 ) ( 1 + i √3) / ( 1 - i √3 ) (1 + i √3)

→ ( 1 + I √3 )² / ( 1² - i² √3² )

→→ 1 - 3 + 2 i √3 / 1 + 3

→→  -1 + i √3 / 2

→→ -1 / 2 + i √3 / 2

→→ Sin ( -π / 6 ) + i cos ( -π / 6 )


thn,

[ 1 + i √3 / 1 - i √3 ]^n    =  [ Sin ( -π / 6 ) + i cos ( -π / 6 ) ]^n

                                     = Sin ( -  n π / 6 ) + i cos ( -  n π / 6 )


so,

Sin ( - n π / 6 ) + i cos ( - n π / 6 ) which becomes 1.


so,

n = 9.


∴ n = 9.


Hope this helps u


Be brainly

Similar questions