find least positive integer n for which [(1+i√3)/1-i√3)]^n=1
Answers
Answered by
3
hope it helps
Attachments:
Answered by
5
Hey there
Here ur answer
→ [ ( 1 + i √3 ) / ( 1 - i √3 ) ]^и = 1
→ 1 + i √3 / 1 - i √3
→ ( 1 + i √3 ) ( 1 + i √3) / ( 1 - i √3 ) (1 + i √3)
→ ( 1 + I √3 )² / ( 1² - i² √3² )
→→ 1 - 3 + 2 i √3 / 1 + 3
→→ -1 + i √3 / 2
→→ -1 / 2 + i √3 / 2
→→ Sin ( -π / 6 ) + i cos ( -π / 6 )
thn,
[ 1 + i √3 / 1 - i √3 ]^n = [ Sin ( -π / 6 ) + i cos ( -π / 6 ) ]^n
= Sin ( - n π / 6 ) + i cos ( - n π / 6 )
so,
Sin ( - n π / 6 ) + i cos ( - n π / 6 ) which becomes 1.
so,
n = 9.
∴ n = 9.
Hope this helps u
Be brainly
Similar questions
History,
6 months ago
Computer Science,
6 months ago
Social Sciences,
1 year ago
Physics,
1 year ago
Science,
1 year ago