Math, asked by Hubbie1814, 11 months ago

Find length of latus rectum of a parabola y sqaure = 4ax passing through the point (2,-6)

Answers

Answered by VineetaGara
3

length of latus rectum of a parabola = 4a,

where a is focal length .

equation of parabola

⇒ y² =4ax

and the parabola passes through (2,-6)

putting these value in equation of parabola

        (-6)*(-6)=4a*2

           36=8a

           a=36/8

⇒length of latus rectum = 4*(36/8)

                                          =18 units

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Length\:of\:latus\:rectum=18\:units}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given :}} \\  \tt{:   \implies  Eqn \: of \:arabola \: ({y}^{2}  =4 ax}) \\  \\  \tt{: \implies Point \: on \: parabola = (2,-6) } \\  \\ \red{ \underline \bold{To \: Find :}} \\  \tt{:  \implies Length \: of \: latus \: rectum = ?}

• According to given question :

 \tt {: \implies  {y}^{2}  = 4ax} \\  \\   \to \text{2, -6 \: is \: on \: parabola \: so, \: the}\\   \text{Eqn \: satisfy \: this \: point} \\  \\  \tt{: \implies  {-6}^{2}  = 4 \times a \times   2} \\  \\  \tt{:  \implies 36 =  8a} \\  \\  \tt{:  \implies a =  \frac{36}{8} } \\  \\   \green{\tt{:  \implies a =\frac{9}{2}}} \\  \\   \green{ \tt{:  \implies Eqn \: of \: parabola \: is \:  \:  {y}^{2}  = 18x}} \\  \\  \bold{As \: we \: know \: that} \\   \tt{:  \implies Length \: of \: latus \: rectum = 4a} \\  \\ \tt{:  \implies Length \: of \: latus \: rectum = 4 \times \frac{9}{2}} \\  \\  \green{\tt{:  \implies Length \: of \: latus \: rectum = 18\: units}}

Similar questions