Math, asked by DRAGON11111, 1 year ago

Find Lim x tends to a (cos x-cos a)/(x-a)

Answers

Answered by MarkAsBrainliest
44

Answer :

Here, cosx - cosa

= 2 sin (\frac{x+a}{2}) sin (\frac{a-x}{2})

Now,

 \lim(x \to\ a) \frac{ cosx - cosa}{x - a} \\ \\ = \lim(x \to \ a) \frac{2sin \frac{x + a}{2}sin \frac{a - x}{2} }{x - a} \\ \\ = - \lim(x \to a)sin \frac{x + a}{2} \times \lim(\frac{a - x}{2} \to\ 0) \frac{sin \frac{a - x}{2} }{ \frac{a - x}{2} } \\ \\ = - (sin \frac{a + a}{2}) \times 1 \\ \\ = - sin \frac{2a}{2} \\ \\ = - sina

Here, \lim(x \to\ 0) \frac{sinx}{x}=1

#MarkAsBrainliest


Steph0303: Great answer :)
Answered by Shubhendu8898
35

Given,

  \lim_{x \to a} \frac{ \cos x - \cos a}{x-a}  \\ \\ =  \lim_{x \to a}  2\frac{\sin\frac{(x+a)}{2}\sin\frac{(a-x)}{2}}{x-a} \\ \\= \lim_{x \to a} \sin\frac{(x+a)}{2} .\lim_{x \to a}  \frac{sin\frac{(a-x)}{2}}{-\frac{(a-x)}{2}}  \\ \\ =  -\sin\frac{(a+a)}{2} *1 \\ \\ = -\sin a \ \ \ \textbf{Ans.}

Similar questions