Math, asked by ArielHarune, 7 months ago

find lim x tends to zero sinx/ x(1+ cosx)​

Answers

Answered by amitnrw
2

Given : lim x tends to zero sinx/ x(1+ cosx)​

\lim_{x \to 0}  \dfrac{\sin x}{x(1+\cos x)}

To Find :  Evaluate the limit

Solution:

\lim_{x \to 0}  \dfrac{\sin x}{x(1+\cos x)}

sinx  = 2sin(x/2)cos(x/2)

1 + cosx  = 2cos²(x/2)

=\lim_{x \to 0}  \dfrac{2\sin \frac{x}{2} \cos \frac{x}{2} }{x(2\cos^2 \frac{x}{2} )}

=\lim_{x \to 0}  \dfrac{2\sin \frac{x}{2} \cos \frac{x}{2} }{x(2\cos^2 \frac{x}{2} )}

=\lim_{x \to 0}  \dfrac{ \tan \frac{x}{2} }{x}

=\lim_{x \to 0}  \dfrac{ \tan \frac{x}{2} }{2\frac{x}{2} }

= \frac{1}{2} \lim_{x \to 0}  \dfrac{ \tan \frac{x}{2} }{\frac{x}{2} }

 \lim_{x \to 0}  \dfrac{ \tan \frac{x}{2} }{ \frac{x}{2} } = 1

=  1/2

Learn More:

2.3(x−1.2)=−9.66 Enter your answer, as a decimal, in the box. x

brainly.in/question/11264248

If, x = [root(p+q) +root(pq)]

brainly.in/question/381466

If x = cube root (2 + square root 3)

brainly.in/question/4040294

Answered by beherasatyajit26186
3

Step-by-step explanation: lim x-> 0 sin x/x ( 1 + cos x )

                                         multiplying and dividing x in numerator.

                               =>          lim x-> 0 (sin x/x *x)/x ( 1+cos x )

                              =>           lim x-> 0 (sin x / x ) / 1 + cos x

                              =>            lim x-> 0  1 / 1+cox x

                              =>             1 / 1 + cos 0

                              =>             1 / 1 + 1

                              =>              1/2

PLEASE MARK IT AS THE BRAINLIEST .

Similar questions