Math, asked by KSmriti, 1 month ago

find : Limit (1+X)^5 -1/3x+5x^2
x_0
with proper explanation​

Answers

Answered by Anonymous
7

To solve :-

  \rm\lim \limits_{x \to 0} \bigg\{\dfrac{(1+x)^5-1}{5x^2+3x} \bigg\}

‎ ‎ ‎

Solution :-

Expanding (1+x)² using binomial theorem,

[see the expansion at : https://brainly.in/question/43788382 ] .

‎ ‎ ‎

 { \implies\rm\lim \limits_{x \to0} \bigg\{\dfrac{\big(x^5+5x^4+10x^3+10x^2+5x+1\big)-1}{5x^2+3x} \bigg\}}

 {\implies \rm\lim \limits_{x \to0} \bigg\{\dfrac{x^5+5x^4+10x^3+10x^2+5x+1-1}{x\big(5x+3\big)} \bigg\}}

 {\implies \rm\lim \limits_{x \to0} \bigg\{\dfrac{x^5+5x^4+10x^3+10x^2+5x}{x\big(5x+3\big)} \bigg\}}

{ \implies \rm\lim \limits_{x \to0} \bigg\{\dfrac{x \big(x^4+5x^3+10x^2+10x+5 \big)}{x\big(5x+3\big)} \bigg\}}

 { \implies\rm\lim \limits_{x \to0} \bigg\{\dfrac{ \not x \big(x^4+5x^3+10x^2+10x+5 \big)}{ \not x\big(5x+3\big)} \bigg\}}

{\implies  \rm\lim \limits_{x \to0} \bigg\{\dfrac{ x^4+5x^3+10x^2+10x+5 }{ 5x+3} \bigg\}}

‎ ‎ ‎

Now directly substitute x = 0

 { \rm\implies\bigg\{\dfrac{ 0^4+5(0)^3+10(0)^2+10(0)+5 }{ 5(0)+3} \bigg\}}

  {\rm\implies\bigg\{\dfrac{ 5 }{ 3} \bigg\}}

‎ ‎ ‎

Hence,

  \rm\lim \limits_{x \to 0} \bigg\{\dfrac{(1+x)^5-1}{5x^2+3x} \bigg\} =\bigg\{\dfrac{ 5 }{ 3} \bigg\}

Similar questions