Math, asked by sabyasachipanda453, 1 year ago

Find limit x tends to 0 3sinx-sin3X/X3

Answers

Answered by ShaikJavidbasha
5

Answer:

Step-by-step explanation:

= lim 3sinx - sin3x/x^3

x _0

= lim x tends to 0

3sinx - 3sinx + 4sin^3x/x^3

= lim 4sin^3x/x^3

x_0

= 4

please mark as brainliest

Answered by SocioMetricStar
4

The value of the limit is 4.

Step-by-step explanation:

The given limit is

\lim _{x\to \:0}\left(\frac{3\sin \left(x\right)-\sin \left(3x\right)}{x^3}\right)

Apply L' Hospital's rule

\lim _{x\to \:0}\left(\frac{3\cos \left(x\right)-\cos \left(3x\right)\cdot \:3}{3x^2}\right)\\\\=\lim _{x\to \:0}\left(\frac{\cos \left(x\right)-\cos \left(3x\right)}{x^2}\right)

Again apply L' Hospital's rule

\lim _{x\to \:0}\left(\frac{-\sin \left(x\right)+3\sin \left(3x\right)}{2x}\right)

Again apply L' Hospital's rule

\lim _{x\to \:0}\left(\frac{-\cos \left(x\right)+9\cos \left(3x\right)}{2}\right)

Plugging the value x = 0

\frac{-\cos \left(0\right)+9\cos \left(3\cdot \:0\right)}{2}\\\\=\frac{-1+9}{2}\\\\=\frac{8}{2}\\\\=4

#Learn More:

Evaluate this limit of the functions​

https://brainly.in/question/12555751

Similar questions