Math, asked by Yourtruefriend, 1 year ago

Find limit x to 5 (x^5 -3125)/ (x^3-125)​

Answers

Answered by divyanshg809
2

Check the attachment.

Attachments:
Answered by harendrachoubay
11

The value of \lim_{x \to 5} \dfrac{x^5-3125}{x^3-125} = \dfrac{125}{3}

Step-by-step explanation:

We have:

\lim_{x \to 5} \dfrac{x^5-3125}{x^3-125}

To find, the value of \lim_{x \to 5} \dfrac{x^5-3125}{x^3-125} = ?

\lim_{x \to 5} \dfrac{x^5-3125}{x^3-125}

Dividing numerator and denominator by (x - 5), we get

= \lim_{x \to 5} \dfrac{\dfrac{x^5-5^5}{x-5}}{\dfrac{x^3-5^3}{x-5}}

We know that,

The limit formula,

\lim_{x \to a} \dfrac{x^n-a^n}{x-a}=na^{n-1}

= \dfrac{5(5)^{5-1} }{3(5)^{3-1}}

= \dfrac{5(5)^{4} }{3(5)^{2}}

= \dfrac{5}{3}\times (5)^{4-2}

= \dfrac{5}{3}\times (5)^{2}

= \dfrac{125}{3}

Thus, the value of \lim_{x \to 5} \dfrac{x^5-3125}{x^3-125} = \dfrac{125}{3}

Similar questions