Math, asked by dharwarkar, 10 months ago

find linear equation in 2 variables when eq 1 is 0.2x+0.3y=1.3 and eq 2 is 0.4x+0.5y=2.3 find x and y

Answers

Answered by ItzAditt007
5

AnswEr:-

❀ Your Answer Is:-

  • x = 2.
  • y = 3.

ExplanaTion:-

Given Equations:-

\tt\longrightarrow0.2x + 0.3y = 1.3  ... \:  \: eq(1). \\  \\ \tt\longrightarrow0.4x + 0.5y =2.3... \:  \: eq(2).

To Find:-

  • The value of x.

So,

Lets multiply the whole eq(1) by 2:-

\tt\longrightarrow2(0.2x + 0.3y = 1.3). \\  \\ \tt\longrightarrow0.4x + 0.6y = 2.6... \: eq(3).

Now,

By subtracting eq(2) from eq(3) we get:-

\tt\mapsto(0.4x + 0.6y) - (0.4x + 0.5y) = 2.6 - 2.3 \\  \\ \tt\mapsto \cancel{0.4x} \:  + 0.6y \:  \cancel{ - 0.4y} \:  - 0.5y = 0.3 \\  \\  \rm(by \:  \: ope n ing \:  \: brackets) \\  \\ \tt\mapsto0.6y - 0.5y = 0.3 \\  \\ \tt\mapsto0.1y = 0.3 \\  \\ \tt\mapsto y =  \frac{0 \cancel.3}{0 \cancel.1} \\  \\  \tt\mapsto y =  \frac{3}{1} . \\  \\ \tt\mapsto y = 3.

By putting the value of y in eq(1) we get:-

\tt\mapsto0.2x + 0.3y = 1.3 \\ \\  \tt\mapsto0.2x + 0.3(3) = 1.3 \\  \\  \rm(by \:  \: putti ing \:  \: the \:  \: value \:  \: of \: \:  y). \\  \\ \tt\mapsto0.2x + 0.9 = 1.3 \\  \\ \tt\mapsto0.2x = 1.3 - 0.9 \\  \\ \tt\mapsto0.2x = 0.4 \\  \\ \tt\mapsto x =   \frac{0  \cancel.4}{0 \cancel.2}  \\  \\ \tt\mapsto x =   \cancel\frac{4}{2} . \\  \\ \tt\mapsto x = 2.

\tt\therefore The required value of x and y is 2 and 3 respectively.

Similar questions