Math, asked by kk1000, 5 hours ago

Find local maxima and minima for f(x) = x³.
Also find it's point of inflection. ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Give function is

\rm :\longmapsto\:f(x) =  {x}^{3}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} f(x) =\dfrac{d}{dx}  {x}^{3}

\rm :\longmapsto\:f'(x) =  {3x}^{3 - 1}

\rm :\longmapsto\:f'(x) =  {3x}^{2}

For maxima or minima

\rm :\longmapsto\:f'(x) = 0

\rm :\longmapsto\: {3x}^{2} = 0

\rm\implies \:x = 0

Now, we have

\rm :\longmapsto\:f'(x) =  {3x}^{2}

Again, On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f'(x) = \dfrac{d}{dx} {3x}^{2}

\rm :\longmapsto\:f''(x) = 3( {2x}^{2 - 1})

\rm :\longmapsto\:f''(x) =6x

So,

\rm :\longmapsto\:f''(0) =6 \times 0 = 0

\rm\implies \:0 \: is \: the \: point \: of \: inflection

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used :-

Let y = f(x) be a given function.

To find the maximum and minimum value, the following steps are follow :

1. Differentiate the given function.

2. For maxima or minima, put f'(x) = 0 and find critical points.

3. Then find the second derivative, i.e. f''(x).

4. Apply the critical points ( evaluated in second step ) in the second derivative.

5. Condition :-

The function f (x) is maximum when f''(x) < 0.

The function f (x) is minimum when f''(x) > 0.

The function f (x) has point of inflection when f''(x) = 0.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

EXPLORE MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions