Math, asked by bharathianand124, 10 months ago

find locus of point p for which the distance of point p to (6,5) is triple the distance from p to x-axis

Answers

Answered by MaheswariS
14

\underline{\textsf{Given:}}

\textsf{The distance of P from (6,5) is triple the distance from P to the x axis}

\underline{\textsf{To find:}}

\textsf{The locus of P}

\underline{\textsf{Solution:}}

\textsf{Let the co-ordinates of P be (h,k) and A be the point (6,5)}

\mathsf{As\;per\;given\;data,}

\mathsf{AP=3{\times}k}

\implies\mathsf{\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=3k}

\implies\mathsf{\sqrt{(h-6)^2+(k-5)^2}=3k}

\mathsf{Squaring\;on\;bothsides\;,we get}

\implies\mathsf{(h-6)^2+(k-5)^2=9k^2}

\implies\mathsf{h^2+36-12h+k^2+25-10k=9k^2}

\implies\mathsf{h^2+36-12h-8k^2+25-10k=0}

\implies\mathsf{h^2-8k^2-12h-10k+61=0}

\therefore\mathsf{The;\;locus\;of\;P\;is\;\;\boxed{\mathsf{x^2-8y^2-12x-10y+61=0}}}

Find more:

B and c are fixed points having coordinates (3,0) and (-3,0) respectively. If the vertical angle bac is 90 then locus

https://brainly.in/question/13799728

If A =(-2,3) and B=(4,1) are given points find the equation of locus of point P, such that PA=2PB.

https://brainly.in/question/3201572

Find the locus of the point p such that PA2+pb2=2c2 where A(a,0),B(-a,o) and 0<|a|<|c|​

https://brainly.in/question/19831924

Answered by Anonymous
1

Let P be (x,y)</p><p></p><p>Distance from (4,0)</p><p></p><p>(x−4)2+y2x2−4x+16+y2x2+y2−4x+16⋯(1)</p><p></p><p>Distance from Origin</p><p></p><p>x2+y2</p><p></p><p>According to Question</p><p></p><p></p><p>x2+y2−4x+16=2x2+y2</p><p></p><p>Squaring on both sides</p><p></p><p>(x2+y2−4x+16)=4(x2+y2)3x2+3y2+4x−16=0</p><p></p><p>

Similar questions