Math, asked by shaikhreehen, 13 hours ago

find log75\16-2lig5\9+log32\243=log2​

Answers

Answered by armaans5tha
1

Answer:

Given log(75/16) - 2log(5/9) + log(32/243).  ------ (1)

We know that a log(b) = log b^a.

                       2 log(5/9) = log (5/9)^2.

We know that log(a) - log(b) = log(a/b).

                       log(75/16) - log(5/9)^2 = log(75/16/(5/9)^2.  

                                                            = log (75/400/81)

                                                            = log (75 * 31/400)

                                                            = log (6075/400)

                                                            = log (243/16)  ----- (2)

Substitute (2) in (1), we get

= log (243/16) + log(32/243)

We know that log a + log b = log ab.

log(243/16) + log(32/243) = log(243/16 * log 32/243)

                                          = log(243 * 32/16 * 243)

                                          = log(32/16)

                                          = log 2.

Hope this helps!

Step-by-step explanation:

Similar questions