Math, asked by anand388, 2 months ago

Find Lt (1 + x)
x →0​

Attachments:

Answers

Answered by mathdude500
1

Consider,

 \bullet \: \blue{ \tt \:\displaystyle\lim_{x \: \to \: 0} {(1 + x)}^{  \displaystyle\frac{1}{x} } }

The exponential function in algebraic form is in the form of Binomial Theorem.

So,

it can be expanded on the basis of this theorem.

 \rm\bullet\displaystyle {(1 + x)}^{n}  = 1 + nx + \dfrac{n(n - 1) {x}^{2} }{2!}  + \dfrac{n(n - 1) (n - 2){x}^{3} }{3!} +  -  -  -

Now,

\displaystyle \rm \: replace \: n \: by \: \dfrac{1}{x}

we get

 \rm\bullet\displaystyle {(1 + x)}^{\displaystyle \: \dfrac{1}{x} }  = 1 + \dfrac{1}{x}  \cdot \: x + \dfrac{\dfrac{1}{x} (\dfrac{1}{x}  - 1) {x}^{2} }{2!}  + \dfrac{\dfrac{1}{x} (\dfrac{1}{x}  - 1) (\dfrac{1}{x}  - 2){x}^{3} }{3!} +  -  -  -

 \rm\bullet\displaystyle {(1 + x)}^{\displaystyle \: \dfrac{1}{x} }  = 1 +1 + \dfrac{(1 - x)}{2!}  + \dfrac{(1 - x)(1 - 2x)}{3!}  +  -  -  -

On applying limits x tends to 0, we get

 \bullet \: \tt \:\displaystyle\lim_{x \: \to \: 0} {(1 + x)}^{  \displaystyle\frac{1}{x} }  = \displaystyle\lim_{x \: \to \: 0}(1 + 1 + \dfrac{1 - x}{2!}  + \dfrac{(1 - x)(1 - 2x)}{3!}  +  -  -

 \bullet \: \tt \:\displaystyle\lim_{x \: \to \: 0} {(1 + x)}^{  \displaystyle\frac{1}{x} }  = 1 + 1 + \dfrac{1}{2!}  + \dfrac{1}{3!}  +  -  -  -

 \bullet \: \:   \therefore \: \bf \:\displaystyle\lim_{x \: \to \: 0} {(1 + x)}^{  \displaystyle\frac{1}{x} }  =  \bf \: e

 \boxed{ \pink{ \because \tt \: \: e \:  = 1 + 1 + \dfrac{1}{2!}  + \dfrac{1}{3!}  +  -  -  -  }}

Hence,

 \large \boxed{ \boxed{ \purple{ \rm \:  \bullet \: \bf \:\displaystyle\lim_{x \: \to \: 0} {(1 + x)}^{  \displaystyle\frac{1}{x} }  = e \: }}}

Similar questions