Math, asked by sania3132006, 7 hours ago

Find Lt x→5 f(x) where f(x) = | x | - 5​
Please Answer Fast

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expression is

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 5}f(x) \:  \: where \: f(x) =  |x| - 5}

Let first define the function f(x).

We know,

\begin{gathered}\begin{gathered}\bf\:  |x|  = \begin{cases} &\sf{ - x \:  \:  \:  \: when \: x < 0} \\ &\sf{ \:  \: x \:  \:  \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\:  |x|  - 5 = \begin{cases} &\sf{ - x - 5 \:  \:  \:  \: when \: x < 0} \\ &\sf{ \:  \: x  - 5\:  \:  \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So,

\begin{gathered}\begin{gathered}\bf\:f(x) =   |x|  - 5 = \begin{cases} &\sf{ - x - 5 \:  \:  \:  \: when \: x < 0} \\ &\sf{ \:  \: x  - 5\:  \:  \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

Consider, LHS

\rm :\longmapsto\:\displaystyle\lim_{x \to 5^{ - }} f(x)

\rm \:  =  \: \displaystyle\lim_{x \to 5^{ - }} (x - 5)

To evaluate this limit, we use method of Substitution.

So, Substitute

\red{\rm :\longmapsto\:x = 5 - h \:  \: as \: x \to \: 5 \:  \: so \: h \to \: 0}

\rm \:  =  \: \displaystyle\lim_{h \to 0} (5 - h - 5)

\rm \:  =  \: \displaystyle\lim_{h \to 0} ( - h )

\rm \:  =  \: 0

So,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 5^{ - }} f(x) = 0 \: }}

Now, Consider RHL

\rm :\longmapsto\:\displaystyle\lim_{x \to 5^{ + }} f(x)

\rm \:  =  \: \displaystyle\lim_{x \to 5^{ +  }} (x - 5)

To evaluate this limit, we use method of Substitution.

So, Substitute

\red{\rm :\longmapsto\:x = 5  +  h \:  \: as \: x \to \: 5 \:  \: so \: h \to \: 0}

\rm \:  =  \: \displaystyle\lim_{h \to 0} (5  + h - 5)

\rm \:  =  \: \displaystyle\lim_{h \to 0} (h)

\rm \:  =  \: 0

So,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 5^{ + }} f(x) = 0 \: }}

So, from above we concluded that

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 5^{ -  }} f(x) =  \displaystyle\lim_{x \to 5^{ + }} f(x) = 0 \: }}

So,

 \red{\rm \implies\:\boxed{\tt{  \displaystyle\lim_{x \to 5} f(x) = 0 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\dfrac{sinx}{x} = 1 \: }

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\dfrac{tanx}{x} = 1 \: }

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\dfrac{log(1 + x)}{x} = 1 \: }

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\dfrac{ {e}^{x}  - 1}{x} = 1 \: }

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\dfrac{ {a}^{x}  - 1}{x} = loga \: }

Similar questions