Find m and n if x- 1 and x-2
exactly divide the polynomial x^3+mx^2-nx+10
Answers
EXPLANATION.
x - 1 and x - 2 are the zeroes of the polynomial.
Polynomial x³ + mx² - nx + 10.
As we know that,
x - 1 is the zeroes of the polynomial, we get.
⇒ x - 1 = 0.
⇒ x = 1.
Put the value of x = 1 in equation, we get.
⇒ x³ + mx² - nx + 10 = 0.
⇒ (1)³ + m(1)² - n(1) + 10 = 0.
⇒ 1 + m - n + 10 = 0.
⇒ m - n + 11 = 0.
⇒ m = n - 11. ⇒ (1).
x - 2 is the zeroes of the polynomial, we get.
⇒ x - 2 = 0.
⇒ x = 2.
Put the value of x = 2 in equation, we get.
⇒ x³ + mx² - nx + 10 = 0.
⇒ (2)³ + m(2)² - n(2) + 10 = 0.
⇒ 8 + 4m - 2n + 10 = 0.
⇒ 4m - 2n + 18 = 0.
⇒ 2(2m - n + 9) = 0.
⇒ 2m - n + 9 = 0. ⇒ (2).
From equation (1) & (2) we get,
Put the value of equation (1) in equation (2), we get.
⇒ 2(n - 11) - n + 9 = 0.
⇒ 2n - 22 - n + 9 = 0.
⇒ n - 13 = 0.
⇒ n = 13.
Put the value of n = 13 in equation (1), we get.
⇒ m = n - 11.
⇒ m = 13 - 11.
⇒ m = 2.
Value of m = 2 & n = 13.
☆ On substituting the value of m in equation (1), we get