Math, asked by khairnartejas2408, 5 days ago

find m for which the line 3x-my+2=0 intersects the circle
 {x}^{2} + {y}^{2} - 4x + 6y - 3= 0
at 2 coincident points. (tangent to the circle)

plz ans with explanation and don't spam or will report you​

Answers

Answered by user0888
34

\huge\text{$m=\dfrac{20}{7}\text{ or }m=4$}

\huge\text{\underline{\underline{Explanation}}}

\large\boxed{\text{Geometry}}

We know that the tangent and the circle are apart by radius.

\text{$\cdots\longrightarrow d=r$}

\large\boxed{\text{Standard form}}

\text{$\cdots\longrightarrow(x^{2}-4x+4)+(y^{2}+6y+9)-4-9-3=0$}

\text{$\cdots\longrightarrow(x-2)^{2}+(y+3)^{2}=4^{2}$}

\large\boxed{\text{Properties of the circle}}

\text{$\bullet \text{The circle is centered at }(2,-3)$.}

\text{$\bullet \text{The radius of the circle is }4$.}

\large\boxed{\text{Distance formula}}

\cdots\longrightarrow d=\dfrac{|ax_{1}+by_{1}+c|}{\sqrt{a^{2}+b^{2}}}

\text{$\bullet\ a, b, c$ are the coefficients.}

\text{$\bullet\ (x_{1}.y_{1})$ is the coordinate.}

\large\boxed{\text{Solving for }m}

Now since we know \text{$a=3$}, \text{$b=-m$}, \text{$c=2$}, \text{$d=4$} and \text{$(2,-3)$}, we want the equation for m.

\cdots\longrightarrow 4=\dfrac{|6+3m+2|}{\sqrt{9+m^{2}}}

This is the wanted equation. Let's break this down.

\text{$\cdots\longrightarrow 16(9+m^{2})=(6+3m+2)^{2}$}

\text{$\cdots\longrightarrow 144+16m^{2}=9m^{2}+48m+64$}

\text{$\cdots\longrightarrow7m^{2}-48m+80=0$}

\text{$\cdots\longrightarrow(7m-20)(m-4)=0$}

\text{$\cdots\longrightarrow m=\dfrac{20}{7}\text{ or }m=4$}

\huge\text{\underline{\underline{Final answer}}}

Hence, -

\text{$\cdots\longrightarrow\boxed{m=\dfrac{20}{7}\text{ or }m=4}$}

Attachments:
Similar questions