Math, asked by anjuchahande, 3 months ago


Find m if
(m - 12) x ²+ 2(m-12)x +2 = 0
has real roots and equal​

Answers

Answered by mathdude500
2

\large\underline{\sf{Given- }}

 \sf \: A  \: quadratic  \: equation  \: (m - 12) {x}^{2}  + 2(m - 12)x + 12 = 0

 \sf \: has \: real \: and \: equal \: roots.

\large\underline{\sf{To\:Find - }}

 \sf \: The \: value \: of \: m

\large\underline{\sf{Basic \:  Concept \:  Used - }}

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

\large\underline{\sf{Solution-}}

Given

 \sf \: A \:  quadratic \:  eq^{n}   \:  {(m - 12)x}^{2} + 2(m - 12)x + 2 = 0 -  - (1)

On comparing with ax² + bx + c = 0, we get

  • a = m - 12

  • b = 2(m - 12)

  • c = 2

So,

Discriminant (D) of above quadratic equation is given by

\rm :\longmapsto\:Discriminant \: (D) =  {b}^{2}  \:  -  \: 4ac

\rm :\longmapsto\:D =  { \{2(m - 12) \}}^{2}  - 4 \times 2 \times (m - 12)

\rm :\longmapsto\:D = 4 {(m - 12)}^{2}  - 8(m - 12)

\rm :\longmapsto\:D = 4(m - 12)(m - 12 - 2)

\bf\implies \:D = 4(m - 12(m - 14)

Now,

It is given that,

  • Quadratic equation (1) has real and equal roots,

\bf\implies \:Discriminant \: (D) = 0

\rm :\longmapsto\:4(m - 12)(m - 14) = 0

\rm :\implies\:m \:  = 14 \: and \: m = 12 \:  \{rejected \because \:  {eq}^{n}  \: not \: exist \}

\bf\implies \:m \:  =  \: 14

\large\underline{\bf{Note- }}

 \sf \: If  \: m = 12, \:  then  \: equation \:  (1) \: can \: be \: rewritten \: as

 \rm :\longmapsto\:\sf \: (12 - 12) {x}^{2}  + 2(12 - 12)x + 2 = 0

\rm :\longmapsto\:0 + 0 + 2 = 0

\rm :\longmapsto\:2 = 0

\rm :\longmapsto\:which \: is \: absurd.

Similar questions