Find m if (m - 12)x² + 2(m - 12) x + 2 = 0 has real and equal root
Answers
Answered by
1
ANSWER
(m-12) (m-14)
Step-by-step explanation:
ax2+bx+c=0
(m-12)x2+2(m-12)x+2=0
a=(m-12)
b=2(m-12)
c=2
b^2 4ac
=[2(m-12)]^2-4(m-12)x2=0
=4(m-12)^2-8(m-12)=0
example=(a-b)2=a2-ab+b2
(m-12)=m2- 2 x m x 12 +122=m2-24m+144
=4(m2-24m+144)-8m+96=0
=4m2-96m+576-8m+96=0
=4m2-96m-8m+576+96=0
=4m2-104m+672=0
=4m2÷4-104m÷4+672÷4=0
=m2-26m+168=0
=m2-12m-14m+168=0
=m(m-12)-14(m-12)=0
=(m-12) (m-14)=0
=m-12=0 m-14=0
(m-12) (m-14) ans.
Similar questions