Find m if + = 2744
Answers
Given :-
7^(m+1)+7^(m+2) = 2744
To find :-
The value of m
Solution :-
Given that
7^(m+1)+7^(m+2) = 2744
It can be written as
(7^m × 7^1) + (7^m × 7^2) = 2744
Since, a^m × a^n = a^(m+n)
=> (7^m × 7) + (7^m × 49) = 2744
=> 7^m (7+49) = 2744
=> 7^m × 56 = 2744
=> 7^m = 2744/56
=> 7^m = 49
=> 7^m = 7^2
On comparing both sides then
=> m = 2
Therefore, m = 2
Answer :-
The value of m is 2
Check :-
If m = 2 then LHS becomes
7^(2+1) + 7^(2+2)
= 7^3+7^4
= 343+2401
= 2744
= RHS
LHS = RHS is true for m = 2
Used formulae:-
• a^m × a^n = a^(m+n)
Given :
7^(m+1)+7^(m+2) = 2744
To find :
The value of m
Solution :
Given that
7^(m+1)+7^(m+2) = 2744
It can be written as
(7^m x 7^1) + (7^m x 7^2) = 2744
Since, a^m x a^n = a^(m+n) => (7^m x 7) + (7^m x 49) = 2744
=> 7^m (7+49) = 2744
=> 7^m x 56 = 2744
=> 7^m = 2744/56
=> 7^m = 49
=> 7^m = 7^2
On comparing both sides then
=> m = 2
Therefore, m = 2
Answer :
The value of m is 2
Check :
If m = 2 then LHS becomes
7^(2+1) +7^(2+2)
= 7^3+7^4
= 343+2401
= 2744
= RHS
LHS = RHS is true for m = 2
Used formulae: • a^m x a^n = a^(m+n)