Math, asked by sarwegaurav, 1 year ago

find m if the quadratic equation x^2-2(m+1)x+m^2 has equal and real roots

Answers

Answered by Anonymous
2

Answer:

m = -1/2


Step-by-step explanation:


Discriminant


Let a quadratic equation be ax² + bx + c = 0

Discriminant Δ = b² - 4 ac


Conditions


For equal roots

b² = 4 ac


For real roots

b² > 4 ac


For imaginary roots

b² < 4 ac


Given they have equal roots .


Comparing x² - 2 ( m + 1 ) x + m² with ax² + bx + c


a = 1

b =  - 2 ( m + 1 )

c = m²


b² = 4 ac

⇒ ( - 2 )²( m + 1 )² = 4 . 1 . m²

⇒ 4 ( m + 1 )² = 4 m²

⇒ ( m + 1 )² = m²

⇒ m² + 2 m + 1 = m²

⇒ 2 m + 1 = 0

⇒ 2 m = - 1

⇒ m = -1/2

Answered by Anonymous
3
Answer:

m = -1/2


Step-by-step explanation:


Discriminant


Let a quadratic equation be ax² + bx + c = 0

Discriminant Δ = b² - 4 ac


Conditions


For equal roots

b² = 4 ac


For real roots

b² > 4 ac


For imaginary roots

b² < 4 ac


Given they have equal roots .


Comparing x² - 2 ( m + 1 ) x + m² with ax² + bx + c


a = 1

b =  - 2 ( m + 1 )

c = m²


b² = 4 ac

⇒ ( - 2 )²( m + 1 )² = 4 . 1 . m²

⇒ 4 ( m + 1 )² = 4 m²

⇒ ( m + 1 )² = m²

⇒ m² + 2 m + 1 = m²

⇒ 2 m + 1 = 0

⇒ 2 m = - 1

⇒ m = -1/2


HOPE IT HELPS U ✌️✌️✌️
Similar questions