find m if the quadratic equation x^2-2(m+1)x+m^2 has equal and real roots
Answers
Answered by
2
Answer:
m = -1/2
Step-by-step explanation:
Discriminant
Let a quadratic equation be ax² + bx + c = 0
Discriminant Δ = b² - 4 ac
Conditions
For equal roots
b² = 4 ac
For real roots
b² > 4 ac
For imaginary roots
b² < 4 ac
Given they have equal roots .
Comparing x² - 2 ( m + 1 ) x + m² with ax² + bx + c
a = 1
b = - 2 ( m + 1 )
c = m²
b² = 4 ac
⇒ ( - 2 )²( m + 1 )² = 4 . 1 . m²
⇒ 4 ( m + 1 )² = 4 m²
⇒ ( m + 1 )² = m²
⇒ m² + 2 m + 1 = m²
⇒ 2 m + 1 = 0
⇒ 2 m = - 1
⇒ m = -1/2
Answered by
3
Answer:
m = -1/2
Step-by-step explanation:
Discriminant
Let a quadratic equation be ax² + bx + c = 0
Discriminant Δ = b² - 4 ac
Conditions
For equal roots
b² = 4 ac
For real roots
b² > 4 ac
For imaginary roots
b² < 4 ac
Given they have equal roots .
Comparing x² - 2 ( m + 1 ) x + m² with ax² + bx + c
a = 1
b = - 2 ( m + 1 )
c = m²
b² = 4 ac
⇒ ( - 2 )²( m + 1 )² = 4 . 1 . m²
⇒ 4 ( m + 1 )² = 4 m²
⇒ ( m + 1 )² = m²
⇒ m² + 2 m + 1 = m²
⇒ 2 m + 1 = 0
⇒ 2 m = - 1
⇒ m = -1/2
HOPE IT HELPS U ✌️✌️✌️
m = -1/2
Step-by-step explanation:
Discriminant
Let a quadratic equation be ax² + bx + c = 0
Discriminant Δ = b² - 4 ac
Conditions
For equal roots
b² = 4 ac
For real roots
b² > 4 ac
For imaginary roots
b² < 4 ac
Given they have equal roots .
Comparing x² - 2 ( m + 1 ) x + m² with ax² + bx + c
a = 1
b = - 2 ( m + 1 )
c = m²
b² = 4 ac
⇒ ( - 2 )²( m + 1 )² = 4 . 1 . m²
⇒ 4 ( m + 1 )² = 4 m²
⇒ ( m + 1 )² = m²
⇒ m² + 2 m + 1 = m²
⇒ 2 m + 1 = 0
⇒ 2 m = - 1
⇒ m = -1/2
HOPE IT HELPS U ✌️✌️✌️
Similar questions