Math, asked by kumarujjwal5213, 3 months ago

find m so the (-5)m+2 x (-5)^6=(-5)^10​

Answers

Answered by mathdude500
2

Given Question :-

Solve for m :-

 \tt \:  {( - 5)}^{m + 2}  \times  {( - 5)}^{6}  =  {( - 5)}^{10}

\begin{gathered}\Large{\bold{{\underline{Formula \:  Used \::}}}}  \end{gathered}

Laws of exponents

\begin{gathered}(1)\:{\underline{\boxed{\bf{{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{ {(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{{ {x}^{0} = 1}}}}} \\ \end{gathered}

\begin{gathered}(6)\:{\underline{\boxed{\bf{if \: { {x}^{m} =  {x}^{n}  \: then \: m \:  =  \: n}}}}} \\ \end{gathered}

\large\underline{\bold{Solution - }}

\rm :\longmapsto\: {( - 5)}^{m + 2}  \times  {( - 5)}^{6}  =  {( - 5)}^{10}

\rm :\longmapsto\: {( - 5)}^{m + 2 + 6}  =  {( - 5)}^{10}

\rm :\longmapsto\: {( - 5)}^{m + 8}  =  {( - 5)}^{10}

\rm :\implies\:m + 8 = 10

\rm :\implies\:m \:  =  \: 2

Similar questions