Math, asked by nanimanideep93, 8 months ago

find 'm Solkar equation
x²+2 (m+2) x+qm=0 will have equal roots?​

Answers

Answered by senboni123456
1

Step-by-step explanation:

Given,

 {x}^{2} + 2(m + 2)x + qm = 0

Since, it has equal roots, so its discriminant will be =0,

Here, a=1, b=2(m+2), c=qm

Now,

 {b}^{2} - 4 ac = 0

 =  {(2(m + 2))}^{2} + 4(1)(qm) = 0

 = 4(m + 2)^{2} - 4qm = 0

 = (m + 2)^{2}  - qm = 0

 {m}^{2} + 4m + 4 - qm = 0

 =   {m}^{2} + (4 - q)m + 4 = 0

 = m =  \frac{(q - 4) +  \sqrt{(4 - q) ^{2} - 4(4)(1) } }{2}  \:  \: or \:  \: m = \frac{(q - 4)  -  \sqrt{(4 - q) ^{2} - 4(4)(1) } }{2}

m =  \frac{(q - 4) +  \sqrt{16 +  {q}^{2} - 8q - 16 } }{2}  \:  \: or \:  \: m = \frac{(q - 4) -  \sqrt{16 +  {q}^{2} - 8q - 16 } }{2}

m =  \frac{(q - 4) +  \sqrt{ {q}^{2} - 8q } }{2}  \:  \: or \:  \: m = \frac{(q - 4)  -   \sqrt{ {q}^{2} - 8q } }{2}

Similar questions