Math, asked by abysonanoop6, 4 months ago

find m when (5^m÷5^-3)×5²=5³ plz don't give irrelevant answers if you are giving give correct answers​

Answers

Answered by Anonymous
9

Given:

  • \sf {(5^{m} \div 5^{-3}) \times 5^{2} = 5^{3}}

To find:

  • Value of m.

Solution:

\sf {(5^{m} \div 5^{-3}) \times 5^{2} = 5^{3}}

 \bigstar {\sf{ \pink{Using \: law \: of \: indices \:  {a}^{m} \div  {a}^{n} =  {a}^{m - n} }  }}

\sf {5^{m-(-3)}  \times 5^{2} = 5^{3}}

\sf {5^{m+3}  \times 5^{2} = 5^{3}}

 \bigstar {\sf{ \orange{Using \: law \: of \: indices \:  {a}^{m} \times  {a}^{n} =  {a}^{m  +  n} }  }}

\sf {5^{m+3+2} = 5^{3}}

\sf {5^{m+5} = 5^{3}}

\bigstar {\sf {\purple {On\ equating\ the\ powers\ of\ 5}}}

m+5 = 3

m = 3-5

\boxed {\bf {\red {m = -2}}}

Verification:

Substitute the value of m as (-2),

\sf {(5^{m} \div 5^{-3}) \times 5^{2} = 5^{3}}

\sf {(5^{-2} \div 5^{-3}) \times 5^{2} = 5^{3}}

\sf {5^{-2-(-3)} \times 5^{2} = 5^{3}}

\sf {5^{-2+3} \times 5^{2} = 5^{3}}

\sf {5^{1} \times 5^{2} = 5^{3}}

\sf {5^{1+2} = 5^{3}}

\sf {5^{3} = 5^{3}}

LHS = RHS

LHS = RHSHence Verified!

Value of m:

Value of m is (-2).

Similar questions