Physics, asked by sakshamchugh1119, 10 months ago

Find Magnetic Field at The Centre ?​

Attachments:

Answers

Answered by LoverLoser
22

{\small{\bf{ \orange{ \bigstar Magnetic \ field\ due\ to  \ circular\ loo }}}}{\small{\bf{ \orange{ p \bigstar }}}}

(refer the attachment)

Let the small current element dB which is perpendicular to the centre at O,

be the radius = a

we know that biot savart law's formula,

\bf{ dB = \dfrac { \mu_o }{4\pi }. \dfrac{ I \times dl \times sin \theta }{ r^2 } }

{\theta = 90^0 ,sin90^0 = 1}

so we get,

\bf{ dB = \dfrac { \mu_o }{4\pi }. \dfrac{ I \times dl  }{ a^2 } }

now we will find the B_{net } for whole loop,

\bf{B_{net} = \int \dfrac { \mu_o }{4\pi }. \dfrac{ I \times dl  }{ a^2 } }

\bf{B_{net} = \dfrac{\mu _o }{4\pi } \dfrac{I}{a^2} \int dl }

\sf{we \ know \ dl \ = 2\pi r = 2\pi a}

\bf{B_{net} = \dfrac{\mu _o }{4\pi } \dfrac{I}{a^2} 2 \pi a }

\boxed{\pink{\bf { B_{net} = \dfrac{\mu_o}{2 } \dfrac{I}{a} }}}

this is the expression for centre of the loop

_______________________________

Extra info-

For Semi circular loop expression is

\tt {B= \dfrac{\mu_o}{4} \dfrac {I}{a} }

For quadratic circular loop expression is

\tt {B= \dfrac{\mu_o}{8} \dfrac {I}{a} }

_______________________________

Attachments:
Answered by Anonymous
6

This attachment will help you...

Attachments:
Similar questions