Math, asked by Anonymous, 1 month ago

Find matrices A and B such that A + B = \left[\begin{array}{ccc}5&4\\7&3\end{array}\right] AND A - B = \left[\begin{array}{ccc}11&2\\-1&7\end{array}\right]

Answers

Answered by Anonymous
7

Answer:

★Given:-

A + B = \left[\begin{array}{ccc}5&4\\7&3\end{array}\right]

A - B = \left[\begin{array}{ccc}11&2\\-1&7\end{array}\right]

Find:-

  • Find matrices A and B

Solution:-

By doing A + B,

 : { \implies{A + B + A - B  = \left[\begin{array}{ccc}5&4\\7&3\end{array}\right]   + \left[\begin{array}{ccc}11&2\\-1&7\end{array}\right]}}

 : { \implies{A + A   = \left[\begin{array}{ccc}5 + 11&4 + 2\\7 + ( - 1)&3 + 7\end{array}\right]   }}

 : { \implies{2A   = \left[\begin{array}{ccc}16&6\\6&10\end{array}\right]   }}

 : { \implies{ \frac{2A}{2}    = \left[\begin{array}{ccc} \frac{16}{2} & \frac{6}{2} \\ \frac{6}{2} & \frac{10}{2} \end{array}\right]   }}

{ \bf{ : { \implies{ A  = \left[\begin{array}{ccc} 8& 3\\ 3 & 5 \end{array}\right]   }}}}

By Substituting A matrix in A + B,

 : { \implies{\left[\begin{array}{ccc}8&3\\3&5\end{array}\right]+ B = \left[\begin{array}{ccc}5&4\\7&3\end{array}\right]}}

 : { \implies{B = \left[\begin{array}{ccc}5&4\\7&3\end{array}\right]  - \left[\begin{array}{ccc}8&3\\3&5\end{array}\right]}}

 : { \implies{B = \left[\begin{array}{ccc}5 - 8&4 - 3\\7 - 3&3 - 5\end{array}\right]  }}

 : {\bf{ \implies{B = \left[\begin{array}{ccc} - 3&1\\4& - 2\end{array}\right]  }}}

Therefore,

  •  \sf{Matrix \: { A  = \left[\begin{array}{ccc} 8& 3\\ 3 & 5 \end{array}\right]   }}
  •  { \sf{Matrix \: B = \left[\begin{array}{ccc} - 3&1\\4& - 2\end{array}\right]  }}

Hope it's Helps you ☻

Answered by CopyThat
29

Step-by-step explanation:

Given :-

A + B = \pmb{\bf{\left[\begin{array}{ccc}5&4\\7&3\\\end{array}\right] }}

A - B = \pmb{\bf{\left[\begin{array}{ccc}11&2\\-1&7\\\end{array}\right] }}

To find :-

A and B ?

Solution :-

A + B = \pmb{\bf{\left[\begin{array}{ccc}5&4\\7&3\\\end{array}\right] }} - (1)

A - B = \pmb{\bf{\left[\begin{array}{ccc}11&2\\-1&7\\\end{array}\right] }} - (2)

Adding (1) & (2) :

=> (A + B) + (A - B) =  \pmb{\bf{\left[\begin{array}{ccc}5&4\\7&3\\\end{array}\right] }} +  \pmb{\bf{\left[\begin{array}{ccc}11&2\\-1&7\\\end{array}\right] }}

=> 2A = \pmb{\bf{\left[\begin{array}{ccc}16&6\\6&10\\\end{array}\right] }}

=> A = \pmb{\bf{\left[\begin{array}{ccc}(\frac{16}{2} )&(\frac{6}{2} )\\(\frac{6}{2} )&(\frac{10}{2} )\end{array}\right] }}

=> A = \pmb{\bf{\left[\begin{array}{ccc}8&3\\3&5\\\end{array}\right] }}

∴ A = \pmb{\bf{\left[\begin{array}{ccc}8&3\\3&5\\\end{array}\right] }}

Substitute value of A in (1) :

=> A + B = \pmb{\bf{\left[\begin{array}{ccc}5&4\\7&3\\\end{array}\right] }}

=>  \pmb{\bf{\left[\begin{array}{ccc}8&3\\3&5\\\end{array}\right] }} + B = \pmb{\bf{\left[\begin{array}{ccc}5&4\\7&3\\\end{array}\right] }}

=> B = \pmb{\bf{\left[\begin{array}{ccc}5&4\\7&3\\\end{array}\right] }}  -  \pmb{\bf{\left[\begin{array}{ccc}8&3\\3&5\\\end{array}\right] }}

=> B = \pmb{\bf{\left[\begin{array}{ccc}-3&1\\4&-2\\\end{array}\right] }}

∴ B = \pmb{\bf{\left[\begin{array}{ccc}-3&1\\4&-2\\\end{array}\right] }}

Verification :-

=> A + B = \pmb{\bf{\left[\begin{array}{ccc}5&4\\7&3\\\end{array}\right] }}

=>  \pmb{\bf{\left[\begin{array}{ccc}8&3\\3&5\\\end{array}\right] }} +  \pmb{\bf{\left[\begin{array}{ccc}-3&1\\4&-2\\\end{array}\right] }} = \pmb{\bf{\left[\begin{array}{ccc}5&4\\7&3\\\end{array}\right] }}

=> \pmb{\bf{\left[\begin{array}{ccc}5&4\\7&3\\\end{array}\right] }} = \pmb{\bf{\left[\begin{array}{ccc}5&4\\7&3\\\end{array}\right] }}

∴ L.H.S = R.H.S

Similar questions