Math, asked by idontknow462838, 4 days ago

Find matrix x which satisfies the equation given in attachment

Attachments:

Answers

Answered by CopyThat
73

Answer:

  • X=\left[\begin{array}{ccc}-1&-7\\-2&-1\\\end{array}\right]

Step-by-step explanation:

\pmb{\bf{\left[\begin{array}{ccc}3&6\\1&4\\\end{array}\right] }}+\pmb{\bf{\left[\begin{array}{ccc}0&2\\5&2\\\end{array}\right] }}+\bold{2X}=\pmb{\bf{\left[\begin{array}{ccc}1&-6\\2&4\\\end{array}\right] }}

\pmb{\bf{\left[\begin{array}{ccc}(3+0)&(6+2)\\(1+5)&(4+2)\\\end{array}\right] }}+\bold{2X}=\pmb{\bf{\left[\begin{array}{ccc}1&-6\\2&4\\\end{array}\right] }}

\pmb{\bf{\left[\begin{array}{ccc}3&8\\6&6\\\end{array}\right] }}+\bold{2X}=\pmb{\bf{\left[\begin{array}{ccc}1&-6\\2&4\\\end{array}\right] }}

\bold{2X}=\pmb{\bf{\left[\begin{array}{ccc}1&-6\\2&4\\\end{array}\right] }}-\pmb{\bf{\left[\begin{array}{ccc}3&8\\6&6\\\end{array}\right] }}

\bold{2X}=\pmb{\bf{\left[\begin{array}{ccc}(1-3)&(-6-8)\\(2-6)&(4-6)\\\end{array}\right] }}

\bold{2X}=\pmb{\bf{\left[\begin{array}{ccc}-2&-14\\-4&-2\\\end{array}\right] }}

\bold{X}=\pmb{\bf{\left[\begin{array}{ccc}\dfrac{-2}{2} &\dfrac{-14}{2} \\\dfrac{-4}{2} &\dfrac{-2}{2}\end{array}\right] }}

X=\left[\begin{array}{ccc}-1&-7\\-2&-1\\\end{array}\right]

Verification :

\pmb{\bf{\left[\begin{array}{ccc}3&8\\6&6\\\end{array}\right] }}+\bold{2X}=\pmb{\bf{\left[\begin{array}{ccc}1&-6\\2&4\\\end{array}\right] }}

\pmb{\bf{\left[\begin{array}{ccc}3&8\\6&6\\\end{array}\right] }}\; \;\bold{+}  \pmb{\bf{\left[\begin{array}{ccc}-2&-14\\-4&-2\\\end{array}\right] }} = \pmb{\bf{\left[\begin{array}{ccc}1&-6\\2&4\\\end{array}\right] }}

\pmb{\bf{\left[\begin{array}{ccc}(3+(-2))&(8+(-14))\\6+(-4))&(6+(-2))\\\end{array}\right] }}

\pmb{\bf{\left[\begin{array}{ccc}1&-6\\2&4\\\end{array}\right] }}=\pmb{\bf{\left[\begin{array}{ccc}1&-6\\2&4\\\end{array}\right]}}

∴ L.H.S = R.H.S

Similar questions