find maxima or minima if y=sinx+cosx
Answers
Explanation:
a*sinx + b*cosx, maximum & minimum value is (+,-)√[a^2+b^2]. As here a=b=1, maximum and minimum value of sinx + cosx = (+,-)√[1^2+1^2], Maximum value of this function is sqrt(2) and minimum is -sqrt(2).
Mark me as a brainlist thankyou
let y=cosx(sinx+cosx)
y=cosx×sinx+(cosx)^2
differentiate y with respect to x
dy/dx=(cosx)×(cosx)+(sinx)×(-cosx)+2×(cosx)×(-sinx)
dy/dx=(cosx)^2–3×(sinx)×(cosx)-(1)
dy/dx=cosx(cosx-3sinx)
for Maxima or minima dy/dx=0
So either cosx=0 or tanx=1/3
Differentiating (1) again
d^(2)y/dx^(2)=2×(cosx)×(-sinx)-3×[sinx×(-sinx)+cosx×(cosx)]-(2)
Putting cosx=0 and sinx=1 in above equation (2)
d^(2)y/dx^(2)=0–3×[(-1)+0]=3>0 hence minima occurs at cosx=0
Putting tanx=1/3 i.e sinx=1/sqrt(10) and cosx=3/sqrt(10) in equation (2)
d^2y/dx^2=2×(3/sqrt(10))×(-1/sqrt(10)-3×[-1/10+9/10]
d^(2)y/dx^(2)=(-6)/10+(-24)/10=-3<0 hence Maxima occurs at tanx=1/3
Putting this in y
so max value of y =3/sqrt(10)×(3/sqrt(10)+1/sqrt(10))=12/10=1.2.
Hope it helps..