Math, asked by nayakprmila1978, 3 days ago

Find maximum and minimum value of -2 + 7Cos theta - 24Sin theta​

Answers

Answered by sensushma72
0

Answer:

because I am single I am happy

Answered by senboni123456
1

Step-by-step explanation:

Let y=-2+7\cos(\theta)-24\sin(\theta)

 \implies \: y = 25 \bigg \{ \frac{7}{25}  \cos( \theta)  -  \frac{24}{25} \sin( \theta)   \bigg \}  - 2\\

 \implies \: y = 25 \bigg \{  \sin( \alpha )   \cos( \theta)  -   \cos( \alpha )  \sin( \theta)   \bigg \}  - 2\\

Where,  \alpha=\tan^{-1}\bigg(\frac{7}{24}\bigg)\\

So,

 \implies \: y = 25  \sin( \alpha  -  \theta)   - 2\\

We know, -1\leqslant\sin(x)\leqslant1

So,

 - 1 \leqslant   \sin( \alpha  -  \theta)  \leqslant 1

  \implies \: - 25 \leqslant   25\sin( \alpha  -  \theta)  \leqslant 25 \\

  \implies \: - 25 - 2 \leqslant   25\sin( \alpha  -  \theta) - 2  \leqslant 25 - 2 \\

  \implies \: - 27 \leqslant  y  \leqslant 23 \\

 \tt \bold{ Hence \:  \: the \:  \: maximum \:  \: and \:  \: minimum}\\  \bold{values \:  \: of \:  \: the \:  \: given \:  \: expression}\\ \bold{ are \:  \:  - 27 \:  \: and \:  \:  23 \:  \: respectively }

Similar questions