Math, asked by subhashree5678, 11 months ago

find maximum and minimum value of 5 sin x + 12 cos x ​

Answers

Answered by chinmaytople33
0

13,-13

is the correct answer

★░░░░░░░░░░░████░░░░░░░░░░░░░░░░░░░░★

★░░░░░░░░░███░██░░░░░░░░░░░░░░░░░░░░★

★░░░░░░░░░██░░░█░░░░░░░░░░░░░░░░░░░░★

★░░░░░░░░░██░░░██░░░░░░░░░░░░░░░░░░░★

★░░░░░░░░░░██░░░███░░░░░░░░░░░░░░░░░★

★░░░░░░░░░░░██░░░░██░░░░░░░░░░░░░░░░★

★░░░░░░░░░░░██░░░░░███░░░░░░░░░░░░░░★

★░░░░░░░░░░░░██░░░░░░██░░░░░░░░░░░░░★

★░░░░░░░███████░░░░░░░██░░░░░░░░░░░░★

★░░░░█████░░░░░░░░░░░░░░███░██░░░░░░★

★░░░██░░░░░████░░░░░░░░░░██████░░░░░★

★░░░██░░████░░███░░░░░░░░░░░░░██░░░░★

★░░░██░░░░░░░░███░░░░░░░░░░░░░██░░░░★

★░░░░██████████░███░░░░░░░░░░░██░░░░★

★░░░░██░░░░░░░░████░░░░░░░░░░░██░░░░★

★░░░░███████████░░██░░░░░░░░░░██░░░░★

★░░░░░░██░░░░░░░████░░░░░██████░░░░░★

★░░░░░░██████████░██░░░░███░██░░░░░░★

★░░░░░░░░░██░░░░░████░███░░░░░░░░░░░★

★░░░░░░░░░█████████████░░░░░░░░░░░░░★

★░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░★

Answered by anusha195sl
1

Answer:

The maximum and minimum value of 5 sin x + 12 cos x ​ is 13 and -13.

Step-by-step explanation:

  • In trigonometry, the maximum value will be calculated upto infinity and it is larger values of a & b.

  • The maximum value of the function is defined by the formula:

M = A +|B|

  • This is applicable when sin x =1 and cos x =1.

  • The minimum value will be calculated using the smaller values a & b.

The minimum value of the function is defined by the formula:

M = A ‐ |B|.

Given that:

5 sin x + 12 cos x

To find:

The maximum and minimum value =?

Solution:

Let us consider that,

f(x) = 5 Sin x + 12Cos x

Now, we are Differentiating this value,

f'(x) = 5Cosx - 12Sinx

putting f'(x) = 0, we get,

5Cosx - 12Sinx = 0

5Cosx = 12Sinx

Here we can understand that, cos x * sin x = tan x

tanx = 5/12

Sinx = 5/13 , Cosx  = 12/13

Again, we are differentiating to get the value. It become as negative.

f''(x) = -5Sinx -12Cosx  = -ve

Hence,  Sin x = 5/13,  Cos x  = 12/13  

value is max when Sin x = 5/13,  Cos x  = 12/13

5Sinx  + 12Cosx

The derived values of sin x and cos x

= 5(5/13)  + 12(12/13)

= 25/13 + 144/13

= 169/13

= 13

Here, we are using it as negative, we get,

5(-5/13) + 12(-12/13)

= -169/13

= -13

The Maximum value of 5sinx+12cosx = 13

The Minimum Value of 5sinx+12cosx = -13

#SPJ2

Similar questions