Math, asked by Jayanthshetty8600, 2 months ago

Find maximum and minimum value of x^3-9x^2+24x-7

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given that

\bf :\longmapsto\:f(x) =  {x}^{3} -  {9x}^{2} + 24x - 7 -  -  - (1)

On differentiating both sides w. r. t. x, we get

\sf :\longmapsto\:\dfrac{d}{dx}f(x) = \dfrac{d}{dx}( {x}^{3} -  {9x}^{2} + 24x - 7)

\sf :\longmapsto\:f'(x) = \dfrac{d}{dx}{x}^{3} - 9\dfrac{d}{dx} {x}^{2} + 24\dfrac{d}{dx}x - \dfrac{d}{dx}7

\rm :\longmapsto\:f'(x) =  {3x}^{2}  - 18x + 24 -  -  - (2)

For maxima and minima,

\rm :\longmapsto\:Put \: f'(x) = 0

\rm :\longmapsto\: {3x}^{2} - 18x + 24 = 0

\rm :\longmapsto\: {x}^{2} - 6x + 8 = 0

\rm :\longmapsto\: {x}^{2} - 4x - 2x + 8 = 0

\rm :\longmapsto\:x(x - 4) - 2(x - 2) = 0

\rm :\longmapsto\:(x - 4)(x - 2) = 0

\bf\implies \:x = 2 \:  \:  \: or \:  \:  \: x = 4

Now from equation (2), we have

\rm :\longmapsto\:f'(x) =  {3x}^{2}  - 18x + 24

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f'(x) = \dfrac{d}{dx}( {3x}^{2}  - 18x + 24 )

\rm :\longmapsto\:f''(x) = 6x - 18 -  -  - (3)

Let we check the critical points.

Consider x = 2

\rm :\longmapsto\:f''(2) = 6 \times 2 - 18 = 12 - 18 =  - 6

\bf\implies \:f''(2) < 0

\rm :\implies\:f(x) \: is \: maximum \: at \: x = 2

and

\bf :\longmapsto\:Maximum \: value \: is \: f(2)

 \rm \:  =  \:  \:  {2}^{3} -  {9(2)}^{2} + 24(2) - 7

 \rm \:  =  \:  \: 8 - 36 + 48 - 7

 \rm \:  =  \:  \: 13

Consider x = 4

\rm :\longmapsto\:f''(4) = 6 \times 4 - 18 = 24 - 18 = 6

\bf\implies \:f''(4)  >  0

\rm :\implies\:f(x) \: is \: minimum \: at \: x = 4

and

\bf :\longmapsto\:Minimum \: value \: is \: f(4)

 \rm \:  =  \:  \:  {4}^{3} -  {9(4)}^{2} + 24(4) - 7

 \rm \:  =  \:  \: 64 - 144 + 96 - 7

 \rm \:  =  \:  \: 9

Basic Concepts :-

HOW TO FIND MAXIMUM AND MINIMUM VALUE OF A FUNCTION

Let given function be f(x).

Differentiate the given function, we get f'(x).

let f'(x) = 0 and find critical point say x = a

Then find the second derivative, i.e. f''(x).

Apply those critical point in the second derivative.

The function f (x) is maximum when f''(a) < 0.

The function f (x) is minimum when f''(a) > 0.

Similar questions