Find maximum/maximum value of y in the functions given below (a) y=5 - (x -1)^(2) (b) y =4x ^(2) - 4x + 7 (c) y= x^(3) - 3x y =x^(3) - 6x^(2) + 9x + 15 (e) y = (sin 2x - x), where - (pi)/(2) le xxle(pi)/(2)
Answers
Answered by
4
The maximum/maximum value of y in the functions given below are:
(a) y=5 - (x -1)^(2) is max (y) = 5
(b) y =4x ^(2) - 4x + 7 min(y) is 6
(c) y= x^(3) - 3x is max(y) = +2 and min(y) = -2
(d) y =x^(3) - 6x^(2) + 9x + 15 is min (y ) = 15 and max (y) =19
(e) y = (sin 2x - x) has no local maxima or minima
(a) y=5 - (x -1)^(2) is 5
- ==> y' = - 2( x - 1 ) = 0
- x = 1
- y'' = -2 < 0 , therefore y will be local maximum at x = 1
- max (y) = 5 - (1 - 1 )^2 = 5
(b) y = 4x ^(2) - 4x + 7 is 6
- ==> y' = 8x - 4 = 0
- x = 1/2
- y'' = 8 > 0
- Therefore it has only local minima
- min (y) = 4 (1/2)^2 - 4 (1/2) + 7 = 1 - 2 + 7 = 6
(c) y= x^(3) - 3x is
- ==> y' = 3x^2 - 3 = 0
- x = ±1
- y'' = 6x
- y'' = 6 when x =1 and -6 when x = -1
- Therefore local minimum at x = 1 and local maximum at x = -1
- min(y) = 1 - 3 = -2
- max(y) = -1 + 3 = 2
- Cubic functions have global maxima and global minima at ±∞
(d) y =x^(3) - 6x^(2) + 9x + 15 is
- ==> y' = 3x^2 -12x + 9 = 0 ==>
- x^2 - 4x + 3 = 0 ==> x^2 - 3x - x +3 = x ( x -3 ) -1( x - 3 ) = (x -1 )( x -3) = 0
- x =1 , x =3
- y'' = 6x -12
- y'' = -6 , local maxima at x= 1 and local minima y'' = 6 , x =3
- min (y ) = 27 - 6x9 + 9x3 + 15 = 15
- max (y) = 1 - 6 + 9 + 15 = 19
- Cubic functions have global maxima and global minima at ±∞ .
(e) y = sin 2x - x
- ==> y' = cos2x - 1 = 0
- 2x = nπ
- x = nπ/2
- y'' = -sin2x = -sinnπ = 0
- Therefore no local maxima or minima. From graph we can infer that it actually has infinite local maxima or minima.
Similar questions