Math, asked by aryan021212, 19 days ago

Find mean and standard deviation of first n natural numbers​

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

We have to find mean and standard deviation of first n natural numbers .

So, We know first n natural numbers are

1, 2, 3, 4, --------, n

So, Mean of this series is given by

\rm \:  \overline{x} \:  =  \: \dfrac{1}{n} \displaystyle\sum_{k = 1}^n x_k

\rm \:  \overline{x} \:  =  \: \dfrac{1 + 2 + 3 +  -  -  -  + n}{n}

\rm \:  \overline{x} \:  =  \: \dfrac{\displaystyle\sum_{k = 1}^n k}{n}

\rm \:  \overline{x} \:  =  \: \dfrac{\dfrac{n \: (n \:  +  \: 1)}{2} }{n}

\rm\implies \:\rm \:  \overline{x} \:  =  \: \dfrac{n \:  +  \: 1}{2}

Now, Standard Deviation is given by

\rm \:  \sigma \:  =  \:  \sqrt{\dfrac{\displaystyle\sum_{k = 1}^n  {x_k}^{2} }{n}  -  {( \overline{x})}^{2} }  \\

\rm \:  \sigma \:  =  \:   \sqrt{\dfrac{ {1}^{2}  +  {2}^{2}  +  {3}^{2}  +  -  -  +  {n}^{2} }{n}  -  {\bigg(\dfrac{n + 1}{2} \bigg) }^{2}  }

\rm \:  \sigma \:  =  \:   \sqrt{\dfrac{\displaystyle\sum_{k = 1}^n  {k}^{2} }{n}  -  {\bigg(\dfrac{n + 1}{2} \bigg) }^{2}  }  \\

\rm \:  \sigma \:  =  \:   \sqrt{\dfrac{n(n + 1)(2n + 1) }{6n}  -  {\bigg(\dfrac{n + 1}{2} \bigg) }^{2}  }  \\

\rm \:  \sigma \:  =  \:   \sqrt{\dfrac{(n + 1)(2n + 1) }{6}  -  {\bigg(\dfrac{n + 1}{2} \bigg) }^{2}  }  \\

\rm \:  \sigma \:  =  \:   \sqrt{\dfrac{n + 1}{2} \bigg(\dfrac{2n + 1}{3}  - \dfrac{n + 1}{2}  \bigg) }  \\

\rm \:  \sigma \:  =  \:   \sqrt{\dfrac{n + 1}{2} \bigg(\dfrac{4n + 2 - 3(n + 1)}{6}  \bigg) }  \\

\rm \:  \sigma \:  =  \:   \sqrt{\dfrac{n + 1}{2} \bigg(\dfrac{4n + 2 - 3n  - 3}{6}  \bigg) }  \\

\rm \:  \sigma \:  =  \:   \sqrt{\dfrac{n + 1}{2} \bigg(\dfrac{n  - 1}{6}  \bigg) }  \\

\rm\implies \:\rm \:  \sigma \:  =  \:   \sqrt{\dfrac{ {n}^{2}  - 1}{12} }  \\

Hence,

 \:  \:  \:  \:  \:\rm \:  \overline{x} \:  =  \: \dfrac{n \:  +  \: 1}{2}

and

 \:  \:  \:  \:  \:  \:\rm \:  \sigma \:  =  \:   \sqrt{\dfrac{ {n}^{2}  - 1}{12} }  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Result Used

\rm \: \displaystyle\sum_{k = 1}^n k \:  =  \:  \frac{n(n + 1)}{2}  \\

\rm \: \displaystyle\sum_{k = 1}^n  {k}^{2}  \:  =  \:  \frac{n(n + 1)(2n + 1)}{6}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

Standard Deviation for Continuous series using

1. Direct Method

\rm \:\boxed{\tt{   \sigma \:  =  \frac{1}{N} \sqrt{N\displaystyle\sum \: f_i {x_i}^{2}   \:  -  \:   {(\displaystyle\sum f_ix_i)}^{2}  }   \: }} \\

2. Short Cut Method

\rm \:\boxed{\tt{   \sigma \:  =  \frac{1}{N} \sqrt{N\displaystyle\sum \: f_i {d_i}^{2}   \:  -  \:   {(\displaystyle\sum f_id_i)}^{2}  }   \: }} \\

3. Step - Deviation Method

\rm \:\boxed{\tt{   \sigma \:  =  \frac{h}{N} \sqrt{N\displaystyle\sum \: f_i {u_i}^{2}   \:  -  \:   {(\displaystyle\sum f_iu_i)}^{2}  }   \: }} \\

Answered by jaswasri2006
2

 \underline{ \color{purple}{ \rm ANSWERS \: :  }}

 \boxed{ \blue{ \rm mean( x )=  \frac{ n+ 1}{2} }}

 \rm and \:  \:  \: standard \:  \:  \:  \: deviation( \sigma) \:  \: is \:  \:  \:

 \rm \sigma =  \sqrt{ \frac{ {n}^{2} - 1 }{12} }

Attachments:
Similar questions