Math, asked by mndiv333, 1 month ago

Find Mean mode median of the following data 135,150,139,128,151,132,146,149,143,141,150​

Answers

Answered by llSᴡᴇᴇᴛHᴏɴᴇʏll
2

\huge\color{indigo}{\mid{\fbox{\tt{Solution :-}}\mid}}

Given : -

⇒135, 150, 139, 128, 151, 132, 146, 149, 143, 141, 150

\bf\:Mean=\mathtt\red{\frac{Sum  \: of \: observation}{Total \:no.  \: Of\: observation} }

\bf \: ⠀⠀⠀⠀=\frac{135 + 150 + 139 + 128 + 151 + 132 + 146 + 149 + 143 + 141 + 150 }{11}

\bf \: ⠀⠀⠀⠀ =\frac{1,564}{11}

 \\  \\  \\  \\

\bf \: Mode \:  ( arrange \:  the \:  data \:  in \: \\ \bf \: ascending \:  order)

\bf \: 135, 150, 139, 128, 151, 132, 146, 149, 143, 141, 150</p><p>\\\bf⇒128, 132, 135, 139, 141, 143, 146, 149,\underline\mathtt \red{150, 150,}151

\bf \: Mode \:  is  \: maximum \:  occurring  \: observation.

\bf\therefore\:Mode = 150

 \\  \\  \\  \\

\bf \: Median \:  (Arrange \:  the \:  data \: in \\ \bf \: ascending  \: order)

\bf \: 135, 150, 139, 128, 151, 132, 146, 149, 143, 141, 150</p><p>\\\bf⇒128, 132, 135, 139, 141, 143, 146, 149,\underline\mathtt \red{150, 150,}151

\bf \: Median = middle  \: most  \: observation \:  = 132

\bf \: No \: of \: observation= n = 11 (odd)

\bf \: Since ,\:  n \:  is  \: odd

\bf \: Median \: = \:( \frac{n \:  +  \: 1}{2})

\bf \:⠀⠀⠀⠀⠀ =(\frac{11 \:  +  \: 1}{2})^{th} \: observation

\bf \: ⠀⠀⠀⠀⠀ =(\frac{12}{2})^{th}observation

\bf \: ⠀⠀⠀⠀⠀ =6^{th} \: observation

\bf \therefore \: median \:  = 132

 \\  \\  \\  \\

Hᴏᴘᴇ Iᴛ Hᴇʟᴘs Yᴏᴜ ✌️

Attachments:
Answered by manishakumari1990kri
0

Answer:

Given : -

⇒135, 150, 139, 128, 151, 132, 146, 149, 143, 141, 150

\bf\:Mean=\mathtt\red{\frac{Sum \: of \: observation}{Total \:no. \: Of\: observation} }Mean=

Totalno.Ofobservation

Sumofobservation

\bf \: ⠀⠀⠀⠀=\frac{135 + 150 + 139 + 128 + 151 + 132 + 146 + 149 + 143 + 141 + 150 }{11}⠀⠀⠀⠀=

11

135+150+139+128+151+132+146+149+143+141+150

\bf \: ⠀⠀⠀⠀ =\frac{1,564}{11}⠀⠀⠀⠀=

11

1,564

\begin{gathered} \\ \\ \\ \\ \end{gathered}

\begin{gathered}\bf \: Mode \: ( arrange \: the \: data \: in \: \\ \bf \: ascending \: order)\end{gathered}

Mode(arrangethedatain

ascendingorder)

\begin{gathered}\bf \: 135, 150, 139, 128, 151, 132, 146, 149, 143, 141, 150 < /p > < p > \\\bf⇒128, 132, 135, 139, 141, 143, 146, 149,\underline\mathtt \red{150, 150,}151\end{gathered}

135,150,139,128,151,132,146,149,143,141,150</p><p>

⇒128,132,135,139,141,143,146,149,

150,150,

151

\bf \: Mode \: is \: maximum \: occurring \: observation.Modeismaximumoccurringobservation.

\bf\therefore\:Mode = 150∴Mode=150

\begin{gathered} \\ \\ \\ \\ \end{gathered}

Similar questions