Math, asked by soumyagupta917, 2 days ago

Find mean of the above Image​

Attachments:

Answers

Answered by ramkotichandu
0

Answer:

10

Step-by-step explanation:

mean = 12+14+8+6+10/5

= 10

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

The frequency distribution table for calculations of mean using Step Deviation Method is given below :-

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c|c|c}\sf Class\: interval&\sf Frequency\: (f_i)&\sf \: midvalue \: (x_i)&\sf \: u_i&\sf \: f_iu_i\\\frac{\qquad  \qquad}{}&\frac{\qquad  \qquad}{}\\\sf 100 - 120&\sf 12&\sf110&\sf - 2&\sf - 24\\\\\sf 120 - 140 &\sf 14&\sf130&\sf - 1&\sf - 14\\\\\sf 140-160 &\sf 8 &\sf150&\sf0&\sf0\\\\\sf 160 - 180&\sf 6&\sf170&\sf1&\sf6\\\\\sf 180-200&\sf 10&\sf190&\sf2&\sf20\\\frac{\qquad}{}&\frac{\qquad}{}\\\sf & 50\sf & \end{array}}\end{gathered}\end{gathered}\end{gathered}

Now, from above calculations, we have

\rm \:  \:  \:  \:  \bull \:  \:  \:  \:  A = 150 \\

\rm \:  \:  \:  \:  \bull \:  \:  \:  \:  h = 20 \\

\rm \:  \:  \:  \:  \bull \:  \:  \:  \:   \sum \: f_i = 50 \\

\rm \:  \:  \:  \:  \bull \:  \:  \:  \:   \sum \: f_i u_i=  - 12 \\

We know, Mean using Step Deviation Method is given by

\boxed{ \rm{ \:\bf \: Mean = A \:  +  \: \dfrac{ \sum \: f_iu_i}{ \sum \: f_i}  \times h  \:  \: }}\\

So, on substituting the values, we get

\rm \: Mean = 150 \:  +  \: \dfrac{ - 12}{50}  \times 20 \\

\rm \: Mean = 150 \:  -  \: \dfrac{ 12}{5}  \times 2 \\

\rm \: Mean = 150 \:  -  \: \dfrac{24}{5} \\

\rm \: Mean = 150 \:  -  \: 4.8 \\

\rm\implies \:\boxed{ \rm{ \:\rm \: Mean = 145.2 \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

1. Mean using Direct Method

\boxed{ \rm{ \:\bf \: Mean = \: \dfrac{ \sum \: f_ix_i}{ \sum \: f_i}\:  \: }}\\

2. Mean using Short Cut Method

\boxed{ \rm{ \:\bf \: Mean = A \:  +  \: \dfrac{ \sum \: f_id_i}{ \sum \: f_i}\:  \: }}\\

Similar questions