Math, asked by sehajchui, 1 year ago

find mean of this with direct method plzzz​

Attachments:

Answers

Answered by Anonymous
31

Answer:

Mean = 8,875

Step-by-step explanation:

Given :

Cost                                 frequency ( f )

1000 - 5000                           2

5000 - 10000                         3

10000 - 15000                        2

15000 - 20000                       1

We have to find mean with direct method.

We have formula for Mean

\Large \text{$Mean = \bar{x}= \dfrac{\sum_{}{}x_if_i}{\sum_{}{}f_i}$}\\\\\\\large \text{Where $x_i \ is \ mid \ point \ of \ classes$}\\\\\\\large \text{So first find $x_i$}\\\\\\\large \text{We have formula for $x_i=\dfrac{upper+lower \ class}{2}$}

Cost                                 frequency ( f )          x_i                             x_if_i                        

1000 - 5000                           2                         3000                      6000

5000 - 10000                         3                         7500                      22500

10000 - 15000                        2                        12500                     25000

15000 - 20000                       1                         17500                     17500

Total                                        8                                                        71000                      

Now putting values in formula we get

\Large \text{$Mean = \bar{x}= \dfrac{\sum_{}{}x_if_i}{\sum_{}{}f_i}$}\\\\\\\Large \text{$\bar{x}= \dfrac{71,000}{8}$}\\\\\\\Large \text{$\bar{x}=8,875$}

Thus we get mean = 8,875.

Answered by Anonymous
9

Answer:-

\overline{x} = 8,875

Given :-

Cost → Frequency

_______________________________________

1000 - 5000 → 2

5000 - 10000 → 3

10000 - 15000 → 2

15000 - 20000 → 1

\sum f_i = 8

To calculate:-

It's mean by direct method.

Solution :-

For finding mean we needx_i

See attachment.

Now,

by using method of direct mean:-

\overline{x} = \dfrac{\sum f_i.x_i}{\sum f_i}

Where x_i = \dfrac{u.l + l</p><p>.l}{2}

U. L = upper limit

L. L = Lower limit

\sum{f_i x_i } = 71,000

\sum{f_i} = 8

\overline{x} = \dfrac {71000}{8}

 \overline{x} = 8875

Thus mean value is 8875.

Attachments:
Similar questions