Math, asked by mayurp449911, 2 months ago

Find Median for the following data
Class 0-10-20-30-40-
Interval 10 20 30 40 50
Frequncy 5 8 8 15 16 6​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c}\sf Class\: interval&\sf Frequency\: (f)&\sf \: cumulative \: frequency\\\frac{\qquad  \qquad}{}&\frac{\qquad \qquad}{}\\\sf 0 - 10&\sf 5&\sf5\\\\\sf 10 - 20 &\sf 8&\sf13\\\\\sf 20-30 &\sf 8&\sf21\\\\\sf 30 - 40&\sf 15&\sf36\\\\\sf 40-50&\sf 16&\sf52\\\\\sf 50-60&\sf 6&\sf58\\\frac{\qquad}{}&\frac{\qquad}{}\\\sf & \sf & \end{array}}\end{gathered}\end{gathered}\end{gathered}

we know that

  • N = 58

and

  • N/2 = 29

The cumulative frequency just greater than 29 is 36 and the corresponding class is 30 - 40

Median formula :

\boxed{ \sf M= l + \Bigg \{h \times \dfrac{ \bigg( \dfrac{N}{2} - cf \bigg)}{f} \Bigg \}}

Here,

  • l denotes lower limit of median class

  • h denotes width of median class

  • f denotes frequency of median class

  • cf denotes cumulative frequency of the class preceding the median class

  • N denotes sum of frequency

According to the question,

  • median class is 30 - 40

so,

  • l = 30,

  • h = 10,

  • f = 15,

  • cf = cf of preceding class = 21

  • N/2 = 29

By substituting all the given values in the formula,

 \sf \: \:  \:  \:  M =  \:  \: 30 + \bigg(\dfrac{29 - 21}{15}  \bigg) \times 10

 \sf \: \:  \:  \:  M =  \:  \: 30 + \dfrac{16}{3}

 \sf \: \:  \:  \:  M =  \:  \: 30 + 5.33

 \sf \: \:  \:  \:  M =  \:  \: 35.33

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

Mean :-

Using Direct Method

\dashrightarrow\sf Mean = \dfrac{ \sum f_i x_i}{ \sum f_i}

Using Short Cut Method

\dashrightarrow\sf Mean = \: A +  \dfrac{ \sum f_i d_i}{ \sum f_i}

Using Step Deviation Method

\dashrightarrow\sf Mean = \: A \:  +  \:  \dfrac{ \sum f_i u_i}{ \sum f_i} \:  \times  \: h

Similar questions