Math, asked by anisasaleem, 6 months ago

find median of the following data class interval 130-139 , 140 -149,150-159,160-169,170-179,180-189,190-199 frequency 4,9,18, 28,24,10,7,​

Answers

Answered by dualadmire
21

Given:

Class interval and frequency:

Class interval 130-139   140 -149  150-159   160-169   170-179   180-189   190-199

frequency           4              9              18          28           24           10              7

To find:

The median of the data given:

Solution:

Class interval 130-139   140 -149  150-159   160-169  170-179  180-189 190-199

Continuous C.I 129.5-139.5  139.5-149.5 149.5-159.5 159.5-169.5 169.5-179.5 179.5-189.5 189.5-199.5

frequency           4              9              18          28           24           10              7

Cumulative freq. 4              13             31         59           83           93            100

N/2 = 100/50 = 50 lies in cumulative frequency 59, so 160-169 is the median class.

Lower limit of median = 159.5

And the height of the class is 10.

Preceding median of class frequency = 31.

Median = 159.5 + ( (50 - 31)/ 28)*10

= 159.5 + 0.679*10

≈ 166.29

Therefore the median is 166.29.

Answered by akshaykumar66400
6

Answer:

Step-by-step explanation:

Given data

C.I                130−139        140−149          150−159        160−169          170−179          180−189         190−199

Frequency          4                       9                           18                     28                         24                       10                       7

Now we can prepare a table or calculating median

C.I                   Continous C.I        Frequency           Cumulative  

130−139           129.5−139.5             4                                         4

140−149           139.5−149.5             9                                   4+9=13

150−159          149.5−159.5              18                               13+18=31cf

160−169           159.5−169.5            28(f)                          31+28=59

170−179           169.5−179.5             24                              59+24=83

180−189           179.5−189.5             10                              83+10=93

190−199          189.5−199.5                7                                 93+7=100

Here

N=100

⇒N/2=  50

30 median class 159.5−169.5

Because the cf(59) is near to (50)

∴ Lower limit of median

Class(l)=159.5

Class width(h)=10,

cf=preceding cf of median class

f=frequency of median class

∴ Median=l+(  N/2−cf/f) ×h

=159.5+(  50−31/28 )×10

=159.5+ (19/28) ×10

=159.5+   190/28

​=159.5+6.7

Median=166.2

Similar questions