Find middle term of the sequence formed by all 3-digit nos. which leave a remainder 3, when divided by 4. Also Find the sum of all the number on both sides of the middle term seprately.
plzzz its urgent:)
Answers
Answered by
3
The list of 3 digit number that leaves a remainder of 3 when divided by 4 is :
103 , 107 , 111 , 115 , .... 999
The above list is in AP with first term, a = 103 and common difference, d = 4
Let n be the number of terms in the AP.
Now, an = 999
103 + ( n - 1 ) 4 = 999
103 + 4n - 4 = 999
4n + 99 = 999
4n = 900
n = 225
Since, the number of terms is odd, so there will be only one middle term.
middle term =
(
n+1
2
)
th
term =
113
th
term
103 , 107 , 111 , 115 , .... 999
The above list is in AP with first term, a = 103 and common difference, d = 4
Let n be the number of terms in the AP.
Now, an = 999
103 + ( n - 1 ) 4 = 999
103 + 4n - 4 = 999
4n + 99 = 999
4n = 900
n = 225
Since, the number of terms is odd, so there will be only one middle term.
middle term =
(
n+1
2
)
th
term =
113
th
term
Deepmala8:
welcome
Similar questions