find minimum and maximum value of sin ( theta + 30 )+ 2 cos theta
Answers
Given: sin ( theta + 30 ) + 2 cos theta
To find: The minimum and maximum value
Solution:
- Now we have given sin ( theta + 30 ) + 2 cos theta
- Now we know the formula:
sin(a + b) = sin a cos b + cos a sin b
- So using this, we get:
sin theta cos 30 + cos theta sin 30 + 2 cos theta
- Now putting the standard values, we get:
sin theta (√3/2) + cos theta (1/2) + 2 cos theta
√3/2 sin theta + 5/2 cos theta
- Case 1: theta = 0
√3/2 sin(0) + 5/2 cos(0)
√3/2 (0) + 5/2(1)
5/2
- Case 2: theta = 90
√3/2 sin(90) + 5/2 cos(90)
√3/2 (1) + 5/2(0)
√3/2
- Case 3: theta = 180
√3/2 sin(180) + 5/2 cos(180)
√3/2 (0) + 5/2(-1)
-5/2
- Minimum value : -5/2
- Maximum value : 5/2
Answer:
So the minimum value is -5/2 and maximum value is 5/2.
Answer:
+√7 -√7
Step-by-step explanation:
Find minimum & maximum value of
sin theta ( 30) 2 cost theta