Math, asked by samiksha1505, 9 months ago

find minimum and maximum value of sin ( theta + 30 )+ 2 cos theta​

Answers

Answered by Agastya0606
4

Given: sin ( theta + 30 ) + 2 cos theta​

To find: The minimum and maximum value

Solution:

  • Now we have given sin ( theta + 30 ) + 2 cos theta​
  • Now we know the formula:

                   sin(a + b) = sin a cos b + cos a sin b

  • So using this, we get:

                   sin theta cos 30 + cos theta sin 30 +  2 cos theta​

  • Now putting the standard values, we get:

                   sin theta (√3/2) + cos theta (1/2) +  2 cos theta​

                   √3/2 sin theta  + 5/2 cos theta

  • Case 1: theta = 0

                   √3/2 sin(0)  + 5/2 cos(0)

                   √3/2 (0) + 5/2(1)

                   5/2

  • Case 2: theta = 90

                   √3/2 sin(90)  + 5/2 cos(90)

                   √3/2 (1) + 5/2(0)

                   √3/2

  • Case 3: theta = 180

                   √3/2 sin(180)  + 5/2 cos(180)

                   √3/2 (0) + 5/2(-1)

                   -5/2

  • Minimum value : -5/2
  • Maximum value : 5/2

Answer:

           So the minimum value is -5/2 and maximum value is 5/2.

Answered by sanketshinde9730
0

Answer:

+√7 -√7

Step-by-step explanation:

Find minimum & maximum value of

sin theta ( 30) 2 cost theta

Similar questions