find minimum and maximum values of 9 cos^2 x + 48 sin x cos x - 5 sin^2 x - 2
Answers
9cos²x + 48sinx.cosx - 5sin²x - 2
use formula,
cos²x = (1 + cos2x)/2
sin²x = (1 - cos2x)/2
sinx.cosx = sin2x/2
so, 9(1 + cos2x)/2 + 24sin2x - 5(1- cos2x)/2 - 2
= 9/2 + 9/2 cos2x + 24sin2x - 5/2 + 5/2 cos2x - 2
= (9 - 5)/2 + (9 + 5)/2 cos2x + 24sin2x - 2
= 2 + 7cos2x + 24sin2x - 2
= 24sin2x + 7cos2x
we know, -√(a² + b²) ≤ asinθ + bcosθ ≤ √(a² + b²)
so, -√(24² + 7²) ≤ 24sin2x + 7cos2x ≤ √(24² + 7²)
⇒- 25 ≤ 24sin2x + 7cos2x ≤ 25
hence, maximum value of expression is 25 and minimum value is -25.
9cos²x + 48sinx.cosx - 5sin²x - 2
use formula,
cos²x = <br>
sin²x =
sinx.cosx =
so,
= 2 + 7cos2x + 24sin2x - 2
= 24sin2x + 7cos2x
we know, -√(a² + b²) ≤ asinθ + bcosθ ≤ √(a² + b²)
so, -√(24² + 7²) ≤ 24sin2x + 7cos2x ≤ √(24² + 7²)
⇒- 25 ≤ 24sin2x + 7cos2x ≤ 25
So, maximum value of expression is 25 and minimum value is -25.