Math, asked by hmm24, 5 months ago

find missing frequency ???​

Attachments:

Answers

Answered by BrainlyEmpire
206

{\boxed{\bf{Frequency \: distribution \: table}}}

\bf{\underline{\orange{Class\:interval \qquad \qquad \qquad Frequency}}}

\bf{\underline{\quad 0 -10 \qquad \qquad \qquad \quad  \qquad \qquad \quad 10\quad}}

\bf{\underline{\quad 10 -20 \qquad \qquad \qquad \quad \qquad \qquad \quad f_1\quad}}

\bf{\underline{\quad 20 -30 \qquad \qquad \qquad \quad  \qquad \qquad \quad 25\quad}}

\bf{\underline{\quad 30 -40 \qquad \qquad \qquad \quad \qquad \qquad \quad 30\quad}}

\bf{\underline{\quad 40 -50 \qquad \qquad \qquad \quad \qquad \qquad \quad f_2\quad}}

\bf{\underline{\quad 50-60 \qquad \qquad \qquad \quad \qquad \qquad \quad 10\quad}}\\\\

To find:-

Missing frequencies

Solution :-

\large{\red{\underline{\boxed{\bf{\red{Median=\Bigg\left(l + \dfrac{\dfrac{N}{2} - cf}{f}\Bigg\right)\times{h}}}}}}}\\

\sf{l = Lower\:limit}

\sf{h =Width\:of\:class}

\sf{f = Frequency}

\sf{cf = Cumulative\:frequency (preceding\;class)}\\

\sf{M_e=Median}

\tt{\underline{\purple{According\:to\:given\: condition}}}\\

\tt{\blue{Let\;the\;missing\;frequencies\;be\;f_1\;and\;f_2}}

\sf{10-20(class\:interval)=f_1}

\sf{40-50(class\:interval=f_2}

\sf{Total\: frequency (N)=100}\\

\implies\tt{10+f_1+25+30+f_2+10=100}\\

\implies\tt{75+f_1+f_2=100}\\

\implies\tt{f_1+f_2=100-75}\\

\implies\tt{f_1+f_2=25}\\

\sf{l = 30}

\sf{h =10}

\sf{f = 30}

\sf{cf = (10+f_1+25)=f_1+35}\\

\sf{M_e=32}\\

\implies\tt{32=30 +\Bigg\left( \dfrac{ \dfrac{100}{2} - (f_1+35)}{30}\Bigg\right)\times{10}}\\\\

\implies\tt{32-30=\Bigg\left( \dfrac{50 - (f_1+35)}{30}\Bigg\right)\times{10}}\\\\

\implies\tt{2=\Bigg\left( \dfrac{50 - f_1 - 35}{30}\Bigg\right)\times{10}}\\\\

\implies\tt{2=\Bigg\left( \dfrac{50 - 35 - f_1}{30}\times{10}\Bigg\right)}\\\\

\implies\tt{2=\Bigg\left( \dfrac{15 - f_1}{3}\Bigg\right)}\\\\

\implies\tt{2\times{3}}=15 - f_1\\\\

\implies\tt{6=15-f_1}\\\\

\implies\tt{15-6=f_1}\\\\

\implies\tt{f_1=9}\\\\

\tt\underline{\purple{Now\:put\:the\:value\:of\:f_1}}\\

\implies\tt{f_1+f_2=25}\\\\

\implies\tt{9+f_2=25}\\\\

\implies\tt{f_2=25-9}\\\\

\implies\tt{f_2=16}\\\\

\underline{\tt{\purple{Hence,missing\: frequencies}}}\\

\tt{\qquad \qquad \qquad f_1=9}\\

\tt{\qquad \qquad \qquad f_2=16}

.

.

.

•• note :- ⭐ kindly see the answer from website otherwise u won't able to understand ⭐

Similar questions