Math, asked by kmralepse, 7 months ago

find modulus and argument of 1+2i/1-3i

Answers

Answered by dna63
3

We have,,

\sf{\frac{1+2i}{1-3i}}

\sf{=\frac{1+2i}{1-3i}\times{\frac{1+3i}{1+3i}}}

\sf{=\frac{(1+2i)(1+3i)}{1-9i^{2}}}

\sf{=\frac{1+3i+2i+6i^{2}}{1+9}}

\sf{=\frac{1+5i-6}{10}}

\sf{=\frac{-5+5i}{10}}

\sf{=\frac{-5}{10}+\frac{5i}{10}}

\sf{=\frac{-1}{2}+\frac{i}{2}}

Here, x = -1/2 and y = 1/2

Therefore,

Modulus, \sf{r = \sqrt{x^{2}+y^{2}}}

\implies{\sf{r = \sqrt{(\frac{-1}{2})^{2}+(\frac{1}{2})^{2}}}}

\implies{\sf{r = \sqrt{(\frac{2}{4})}}}

\implies{\boxed{\sf{r =\frac{1}{\sqrt{2}}}}}

Now,

\sf{\tan(\Theta)=|\frac{y}{x}|}

\implies{\sf{\tan(\Theta)=|\frac{\frac{1}{2}}{\frac{-1}{2}}|}}

\implies{\sf{\tan(\Theta)=1}}

therefore,

Argument, \boxed{\sf{\Theta=\frac{\pi}{4}}}

__________________________________________

HOPE IT HELPS ❣️❣️❣️

Similar questions