Math, asked by mehakmalik10venus, 2 months ago

find modulus and argument of. -1-i​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:z =  - 1 - i

Let assume that,

\bf :\longmapsto\: - 1 - i = r(cos\theta  + isin\theta ) -  -  -  - (1)

where,

r is Modulus of complex number

θ is argument of complex number.

Now,

\bf :\longmapsto\: - 1 - i = rcos\theta  + i \: rsin\theta

On comparing, we get

\rm :\longmapsto\:rcos\theta  =  - 1 -  -  - (2)

and

\rm :\longmapsto\:rsin\theta  =  - 1 -  -  - (3)

On squaring equation (2) and (3) we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}\theta  = 1 -  -  - (4)

and

\rm :\longmapsto\: {r}^{2} {sin}^{2}\theta  = 1 -  -  - (5)

On adding equation (4) and (5), we get

\rm :\longmapsto\:  {r}^{2} {cos}^{2}\theta  +  {r}^{2} {sin}^{2}\theta  = 1 + 1

\rm :\longmapsto\:  {r}^{2}( {cos}^{2}\theta  + {sin}^{2}\theta)  = 2

\rm :\longmapsto\: {r}^{2}  = 2

\bf\implies \:r =  \sqrt{2}  \:  \:  \: as \: r > 0

On substituting the value of r in equation (2) and (3), we get

\rm :\longmapsto\:cos\theta  =  -  \: \dfrac{1}{ \sqrt{2} }

and

\rm :\longmapsto\:sin\theta  =  -  \: \dfrac{1}{ \sqrt{2} }

As cosθ < 0 and sinθ < 0

\bf\implies \:\theta  \:  \in \:  {3}^{rd}  \: quadrant

\rm :\implies\:\theta  =  - \pi +  \dfrac{\pi}{4}

\rm :\implies\:\theta  = \dfrac{ - 4\pi + \pi}{4}

\rm :\implies\:\theta  = \dfrac{ - 3\pi}{4}

\begin{gathered}\begin{gathered}\bf\: \bf :\longmapsto\:Hence-\begin{cases} &amp;\bf{Modulus =  \sqrt{2} } \\ \\  &amp;\bf{Argument =   -  \: \dfrac{3\pi}{4} } \end{cases}\end{gathered}\end{gathered}

Additional Information :-

Argument of a complex number

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c|c}\sf Re(z)&amp;\sf \: Im(z)&amp;\sf \:arg(z)\\\frac{\qquad \qquad}{}&amp;\frac{\qquad \qquad}{}&amp;\frac{\qquad \qquad}{}\\\sf  &gt; 0&amp;\sf  &gt; 0&amp;\sf\theta \\\\\sf  &lt; 0&amp;\sf  &gt; 0&amp;\sf\pi - \theta \\\\\sf  &lt; 0 &amp;\sf  &lt; 0&amp;\sf\ - \pi + \theta \\\\\sf  &gt; 0&amp;\sf  &lt; 0&amp;\sf - \theta  \\\\ \frac{\qquad}{}&amp;\frac{\qquad}{}&amp;\frac{\qquad \qquad}{}\\\sf &amp; \sf &amp; \end{array}}\end{gathered}\end{gathered}\end{gathered}

Similar questions