Math, asked by sarthakgarg1005, 11 days ago

find modulus and argument of 2√3-2i

Answers

Answered by MysticSohamS
2

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \: given \: complex \: number \: is \\ 2 \sqrt{3}  - 2i \\  \\ comparing \: it \: with \: a + ib \\ we \: get \\  \\ a = 2 \sqrt{3}  \\ b =  - 2 \\  \\ so \: we \: know \: that \\  \\  |z|  =  \sqrt{a {}^{2}  + b {}^{2} }  \\  \\  =  \sqrt{( 2\sqrt{3} ) {}^{2} + ( - 2) {}^{2}  }  \\  \\  =  \sqrt{12 + 4}  \\  \\  =  \sqrt{16}  \\  \\  |z|  = 4

so \: thus \: then \\  \\ arg \: (z) = tan \: θ =  \frac{b}{a}  \\  \\  =  \frac{ - 2}{2 \sqrt{3} }  \\  \\  =  \frac{ - 1}{ \sqrt{3} }  \\  \\ so \: as \: here \:   \\ \: (a,b) = (2 \sqrt{3} , - 2) \\ it \: lies \: in \: quadrant \: 4 \\  \\ hence \: then \:  \\  \\ tan \: θ = 330 =  \frac{11\pi {}^{c} }{6}  \\  \\ therefore \\  \\ arg \: (z) =  \frac{11\pi {}^{c} }{6}

Similar questions