Math, asked by jyotishman421kumar, 19 days ago

Find, Modulus and argument of z=-1-i



class 11 marks 4​

Answers

Answered by sandy1816
0

let \: z =  - 1 - i \\  |z|  =  \sqrt{( { - 1})^{2}  +( { - 1})^{2}  }  =  \sqrt{2}  \\  \\  \theta =  {tan}^{ - 1}  \frac{ - 1}{ - 1}  \\  =  {tan}^{ - 1} 1 \\  =  \frac{\pi}{4}  \\  \\  since \: \:  the \:  \: point \:  \: lies \:   \\ \: in \:  \: the \:  \: third \: quadrent \\ arg( \theta) =  - \pi +  \theta \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  - \pi +  \frac{\pi}{4}  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:    =  \frac{ - 3\pi}{4}

Similar questions