find multiplactive inverse of z=(2+3i)²
Answers
Answered by
0
Step-by-step explanation:
Step-by-step explanation:
Given,
z = {(2 + \sqrt{3}i) }^{2}z=(2+
3
i)
2
= > z = {(2)}^{2} + {( \sqrt{3}i) }^{2} + 2.2. (\sqrt{3}) i=>z=(2)
2
+(
3
i)
2
+2.2.(
3
)i
z = 4 - 3 + (4 \sqrt{3}) iz=4−3+(4
3
)i
= > z = 1 + (4 \sqrt{3}) i=>z=1+(4
3
)i
So,
{z}^{ - 1} = \frac{1}{1 + 4 \sqrt{3} i }z
−1
=
1+4
3
i
1
= > {z}^{ - 1} = \frac{1 - 4 \sqrt{3}i }{(1 + 4 \sqrt{3}i)(1 - 4 \sqrt{3} i) }=>z
−1
=
(1+4
3
i)(1−4
3
i)
1−4
3
i
= > {z}^{ - 1} = \frac{1 - 4 \sqrt{3} i}{1 + 48}=>z
−1
=
1+48
1−4
3
i
= > {z}^{ - 1} = \frac{1}{49} - \frac{4 \sqrt{3} }{49} i=>z
−1
=
49
1
−
49
4
3
PLS MARK ME AS BRILIANTEST
Similar questions