Math, asked by aaditya723817, 1 year ago

find n if 2nc1 ,2nc2 and 2nc3 are in a.p.

Answers

Answered by knjroopa
41

Answer:

n = 7/2

Step-by-step explanation:

Given find n if 2nc1 ,2nc2 and 2nc3 are in a.p.

We know that 2nc1 ,2nc2 and 2nc3 are in a.p.  

So 2 n C2 - 2 n C1 = 2 n C3 - 2 n C2

Now we know that n Cr = n! / r!(n - r)!

                               2 n C1 = 2 n! / 1 ! (2 n - 1)!

                                            = 2 n x (2 n - 1)! /(2 n - 1)!

                                             = 2 n

                       2 n C2 = 2 n! / 2!(2n - 2)!

                                             = 2 n (2 n - 1)(2 n - 2)! /2 (2n - 2)!

                                              = n(2 n - 1)

                          2 n C3 = 2n! /3!(2n - 3)!

                                       = 2n(2n - 1)(2n - 2)(2n - 3)! / 3 x 2 x (2n - 3)!

                                         = n(2n - 1)(2n - 2) / 3

Applying the concept of A.P we get

        n(2n - 1) - 2n = n(2n - 1)(2n - 2) / 3 - n(2n - 1)

         n(2n - 1) - 2n + n(2n - 1) = n(2n - 1)(2n - 2)/3        

          3(4n^2 - 4n) = 4n^3 - 6n^2 + 2n

          18n^2 - 4n^3 - 14n = 0

         2n(9n - 2n^2 - 7) = 0

          2n(2n^2 - 7n - 2n + 7) = 0

          2n (2n - 7) - 1(2n - 7) = 0

          2n[ (n - 1)(2n - 7)] = 0

          2n = 0, 2n - 7 = 0, n - 1 = 0

          So n = 0, n = 1, n = 7/2

So n = 7/2 since it will satisfy the given equation

Similar questions