Math, asked by Nicole26, 1 year ago

find n if 5^{2n+1} ÷ 25 = 5^{5}

Answers

Answered by riyamehta70
3
hope it helps you to
Attachments:

riyamehta70: thanks for marking brainest
Nicole26: welcome
Anonymous: hiii
Answered by Anonymous
3

 \frac{5 {}^{2n + 1} }{25}  =  {5}^{5}  \\  \\ \frac{5 {}^{2n + 1} }{ {5}^{2} } =  {5}^{5}  \\  \\  {5}^{2n + 1}  =  {5}^{2}  \times  {5}^{5}  \\  \\ \frac{5 {}^{2n + 1} }{} =  {5}^{2 + 5}  \\  \\ {5}^{2n + 1}  =  {5}^{7}  \\  \\ { \cancel{5}}^{2n + 1}  =   \cancel{{5}}^{7}   \\  \\ 2n + 1 = 7 \\  \\ 2n = 6 \\  \\ n =  \frac{6}{2}  \\  \\  \red{ \huge{ \mathtt{n \:  = 3}}}
Similar questions