Math, asked by kushal959, 1 year ago

Find n if (i) 3 (n+1P4) = NP5,​

Answers

Answered by mysticd
7

Answer:

 \red { Value \: of \: n } \green {= 9 }

Step-by-step explanation:

 Given \: 3\left( ^{n+1}P_{4} \right) = ^{n}P_{5}

 \implies 3 \left( \frac{(n+1)!}{(n+1-4)!}\right) = \frac{n!}{(n-5)! }

 \boxed { \pink { ^{n}P_{r} = \frac{n!}{(n-r)! }}}

 \implies 3 \left( \frac{(n+1)!}{(n-3)!}\right) = \frac{n!}{(n-5)! }

 \implies 3 \left( \frac{(n+1)\cdotn!}{(n-4)\cdot (n-4)\cdot(n-5)!}\right) = \frac{n!}{(n-5)! }

 \implies 3 \left( \frac{n+1}{(n-3)(n-4)}\right) =1

 \implies 3(n+1) = (n-3)(n-4)

 \implies 3n + 3 = n^{2} - 7n + 12

 \implies 0 = n^{2} - 7n + 12 - 3n - 3

 \implies n^{2} - 10n + 9 = 0

/* Splitting the middle term, we get

 \implies n^{2} - 9n - 1n + 9 = 0

 \implies n( n - 9 ) - 1( n - 9 ) = 0

 \implies (n-9)(n-1) = 0

 \implies n - 9 = 0 \: Or \: n - 1 = 0

 \implies n = 9 \: Or \: n = 1

 n = 1 \: is \: not \: possible

Therefore.,

 \red { Value \: of \: n } \green {= 9 }

•••♪

Similar questions